Challenges for Aircraft Prognostics

Nick Lieven

Professor of Aerospace Dynamics, Pro Vice-Chancellor

University of Bristol

Nick Lieven, Department of Aerospace Engineering, University of Bristol, UK

The Need

- Aircraft power by the hour (airframe and engine)
- Nuclear life extension of power plants
- Earthquake/terrorism future use of buildings
- Prosthetics
- Military survivability
- Environment

Nick Lieven, Department of Aerospace Engineering, University of Bristol, UK

Levels of Health Monitoring

*Level 1: Detect the existence of damage;

Level 2: Detect and Locate damage;

Level 3: Detect, Locate and quantify damage;

Level 4: Estimate the remaining life and usage;

(Prognosis);

Level 5: Self diagnostics; and

Level 6: Self healing

Nick Lieven, Department of Aerospace Engineering, University of Bristol, UK

DAMAGE PROGNOSIS TECHNOLOGY INTEGRATES

Smart Sensing and Computer Simulations to Diagnose and Forecast System Performance

- 1. Develop a Computational Model of the System
- 2. Measure Critical System Parameters and Identify Damage
- 3. Update the Computational Model of the System
- 4. Estimate the Future Loading Environments on the System
- 5. Simulate Updated System Response to Future Environments
- 6. Predict the Remaining Useful Life of the System

Nick Lieven, Department of Aerospace Engineering, University of Bristol, UK

Rotary wing monitoring system - example [Graham Forsyth - DSTO, HUMS conf, 2003] Examples Flight Hours DESIGN PREDICT PRED/DSN A \$/FLT HR REF PARTS (Per 5/5) COST Yoke Assembly \$31280 2500 8350 03 33400 4400 20000 4.5 5.92 Spindle (2) Grip Assembly (2) 22960 4400 20000 4.07 Retention Strap (2) 1250 1210 [0.19] 7280 0.97 Main Rotor Blade (2) 161860 4400 9200 2.1 19.31 M/R Pitch Link Assembly (2) 5880 2500 16700 2.00 10750 4.7 90° Gearbox Housing 1400 6640 6.06 6230 67 Wing, Left 31250 1500 4.1 15.82 1500 13.3 31250 20000 19.27 68 Wing, Right M/R Drag Brace 13690 20000 16.5 10.63 Total (73 Part No's): \$175.37 Nick Lieven, Department of Aerospace Engineering, University of Bristol, UK

Measurement Strategies

Acquire everything ("big data")?

Data integrity/redundancy/false negatives?

Strain/Acceleration/Displacement/Thermal/Flight parameter....

Relevancy (sensitivity)

Wireless?

Nick Lieven, Department of Aerospace Engineering, University of Bristol, UK

Wireless sensing - Power Considerations

	Active	Idle	Sleep
CPU	5 mA	2 mA	5 μΑ
Radio	7 mA (TX)	4.5 mA (RX)	5 μΑ
EE-Prom	3 mA	0	0
LED's	4 mA	0	0
Photo Diode	200 μΑ	0	0
Temperature	200 μΑ	0	0

Panasonic CR2354 560 mAh

What does this mean?

- Lithium cell runs for 35 hrs @ peak load and years at minimum load!
 - » That's three orders of magnitude difference!
- Idleness is not enough, sleep!
- A 1 byte transmission uses same energy as 11,000 cycles of computation!
 - » Send decisions not data!

Nick Lieven, Department of Aerospace Engineering, University of Bristol, UK

Feature Extraction Algorithm Demonstrators

- Feature Extraction Algorithms
 - Significant reduction in transmission requirement
 - Power savings make battery/energy harvesting practical
 - Algorithms
 - · Rain Flow Algorithm, fatigue cycle counting
 - Analogue Filtering
 - Wavelength Packet Transform

Nick Lieven, Department of Aerospace Engineering, University of Bristol, UK

Significant Challenges

- Sensing: What to measure, how to measure it
 - Densely distributed fault-tolerant micro-sensor technology
 - Reconfigurable and adaptable sensing system
- Information Technology: Data interrogation and fusion
 - Distributed and adaptive on-board micro-processing
 - Model compression and updating
 - Large-scale data management
- Predictive Modeling: Damage evolution
 - Evolution of micro-scale damage initiation to system level failure
 - Near-real-time predictive capability capturing relevant mechanics
- System Integration & Deployment on Real-World Hardware
- Communicating the right outcomes

Nick Lieven, Department of Aerospace Engineering, University of Bristol, UK

Concluding Remarks

- Acquiring data is the easy part (do not underestimate certification requirements)
- Never forget the physics of the problem.
- Interpretation of outcomes needs to anticipate future environments

Nick Lieven, Department of Aerospace Engineering, University of Bristol, UK

