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Abstract 

 

Commercial HUM systems usually rely on vibration measurements to assess the condition of 

shafts, gears, and bearings in rotorcraft transmission systems. Recent research has shown that 

acoustic emissions (AE) can be advantageous in the detection of mechanical faults in helicopter 

gearboxes. In particular AE has been successful in detecting very early small defects on bearings 

and gears, increasing sensitivity during the fault detection process and providing extra time for 

maintenance planning. Additionally, knowledge about the gear degradation process can be used 

to define rules that combine AE and vibration sensing technologies, adding robustness to the 

fault detection process by minimising false alarms. 

In this study, a mixture of AE and vibration signal features were used to monitor accelerated 

natural degradation in an experimental gear rig. The suggested signal processing technique first 

defines individual alarm levels for each feature based on statistical analysis of the signals during 

healthy operation. Then proposes knowledge-based rules to merge them into a single health 

indicator for fault detection.  This combined approach has the benefit of producing an early 

fault warning, and increases the confidence in the fault detection procedure as the features reach 

threshold values systematically, reducing the chances of false alarms.  
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1. Introduction 
 

Health and Usage Monitoring Systems (HUMS) typically use predefined vibration features to 

assess the condition of rotorcraft transmission systems [1]–[3]. Commercial HUMS make use 

of different vibration analysis methods to detect faults in bearings, gears and shafts. Condition 

Indicators (CI’s) are key vibration features extracted from the acquired vibration signals, which 

can be related to specific mechanical faults [4]. In HUMS a range of different CI’s are extracted 

from vibration data to characterize component health.  

Acoustic emissions (AE) are defined in the field of machine monitoring as transient elastic 

waves produced by the interface of two components or more in relative motion [5]. Typical AE 

sources include impacts, crack growth, friction, turbulence, material loss, cavitation, leakage 

etc. Its main benefit against vibration analysis and oil analysis is the capability to detect faults 

earlier due to the high sensitivity offered by AE [6]. On the other hand, the main drawback of 

AE is the difficulty in processing, interpreting and manipulating the acquired data [7], [8]. 

Vibration-based gearbox monitoring is well established, however the application of AE to this 

field is still in its early stages [6], [9] and it is difficult to see it implemented in commercial 

tools. In the area of HUMS some research has been carried out in recent years to prove the 
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capabilities of AE to monitor helicopter transmission components[10]–[12]. These 

investigations concluded that AE offered much earlier indication of damage than vibration 

analysis, and the proposed processing techniques were suitable for gearbox fault diagnosis. 

Combination of multiple features from multiple sensors has the advantage of improving the 

effectiveness of fault detection, as different features are sensitive to different faults or 

degradation stages. However, such combinations can lead to oversensitive systems, as the 

random variations inherent to each indicator are combined, false alarms would be triggered 

often if the CI’s are not processed properly. Currently, data fusion techniques are used to tackle 

this problem, frequently relying on machine learning methods to produce sensitive and robust 

CI’s [13]. Despite the success of these techniques, it is difficult to interpret the data 

manipulation that they produce as they act as black-box algorithms. Consequently, its 

implementation is still an issue in highly regulated and safety critical industries such as 

aerospace, which require traceability in the data processing. For that reason, the proposed data 

fusion approach first defines individual alarm levels for each feature based on statistical analysis 

of the signals during healthy operation. Then proposes simple and traceable rules based on 

degradation and failure knowledge to merge them into a single health indicator for fault 

detection.  This combined approach has the benefit of producing early fault warnings, and 

increases the confidence in the fault detection procedure as the features reach threshold values 

systematically, reducing the chances of false alarms. 

 

2. Methodology 

 
2.1 Sensing 

 

The iNDTact GmbH iMPactXS acoustic emission sensor (frequency range 0.1 Hz to 1MHz) 

was used for AE monitoing. It was connected to an iNDTact champ charge amplifier and a 

PicoScope 4224 IEPE digital oscilloscope was used to digitise the signal at 2 MHz to meet the 

Nyquist criterion. A triaxial accelerometer Brüel & Kjaer 4535-B (frequency range of 0.3 to 10 

kHz in X and Y axes, and  0.3 to 12.8 kHz in Z) was selected for vibration monitoring. Vibration 

signals were sampled at 51.2 kHz using a National Instruments 9234C data acquisition card. 

Both sensors were installed in a compact machined aluminium block (Figure 3). Other rig 

sensors include an induction sensor to provide a once per rev signal in the input shaft, output 

shaft speed sensor, torque measurement in the dynamometer and oil sump temperature. 

 2.2 Experimental setup  

 

The instrumented rig used to generate the data is a single stage gearbox rig (Figure 1) powered 

by an 11kW induction motor with 2 pairs of poles, and a nominal speed of 1490 rpm. The output 

shaft is connected to a dynamometer that absorbs and measures the load applied. The gear pair 

has straight teeth, a module of 5, and 24 and 25 teeth in the input and output shafts respectively. 

A lubrication port on the gearbox casing cover provided lubrication from an external pump. 

Although this benchtop arrangement is quite different from a helicopter gearbox in terms of 

shape, size, power, and stiffness, the gear meshing dynamics are the same as in any gear pair. 

The transmission path for the fault generated forces through the gears, shafts, and bearings to 

the static components is also comparable. Figure 2 shows a detail of the gear pair. Figure 3 

shows the sensor cluster installed in the vicinity of the input shaft bearing housing.  
 

2.3 Testing procedure 

 

Data from both sensors, as well as speed, torque and temperature measurements were acquired. 

For simplicity, only the Z axis vibration signal was considered. The dynamometer was set to a 
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constant value of 30Nm. Vibration data was acquired in recordings of 1s (covering around 24 

revolutions), while the broadband sensor data recordings lasted 0.2s to keep a reasonable 

volume of data due to high sampling rate. Observations were acquired in intervals of 30 seconds. 

Although the gear rig was originally designed using EN24T alloy steel for infinite life, a softer 

gear manufactured in EN8 mild steel was used in the output shaft to accelerate pitting 

degradation to study the evolution of the CI’s in a reasonable amount of time. This failure mode 

was selected as planetary gear sets are more vulnerable to pitting defects due to intricate 

lubrication conditions. With the increase of the running cycles, the micro pitting will induce 

more deleterious faults, such as spalling and chipping [14]. The test was run continuously, 

stopping every 30 minutes to observe the state of the gear and take photographs for reference. 

An initial run-in period of 2 hours was not considered in the analysis. The test ended when 

severe degradation in the form of pitting and tooth face deformation was observed. 

2.4 Signal processing strategy 

 

After the anti-aliasing filter and digitation, the vibration signals were processed directly for 

feature extraction. The AE signals were high-pass filtered after preamplification and digitation. 

This multi-sensor approach allows for independent analysis of “low frequency” vibration-like 

events (such as oscillations related to misalignment, unbalance, gear mesh, bearing faults or 

resonances) from “high frequency” events such as impacts, friction or crack growth. Gear 

specific features based on statistical moments of time synchronous average (TSA) and its 

derivatives (difference and residual signals) were also computed.  The features extracted from 

acquired signals are represented in Table 1, which shows a mixture of time domain, frequency 

domain, and gear specific condition indicators. Details of the calculation of these CIs can be 

found in [15]. 

Table 1: Features extracted 

AE Vibration 

Time domain Frequency domain Gear specific 

1) RMS 

2) CF 

3) K 

4) Peak count 

5) RMS 

6) CF 

7) K 

8) Shaft speed (1X) 

9) 2x Shaft speed (2X) 

10) GM 

11) 2xGM 

12) Sidebands around GM (GM ±1X) 

13) Energy in 4-7 KHz range 

14) FM4 

15)  M6A 

16)  M8A 

17)  FM0 

18) Energy Ratio 

19)  Na4 

The selection was based on well-known robust features that are sensitive to the different stages 

of degradation. For instance Kurtosis (K), sidebands around the gear mesh (GM) frequency or 

energy in the 4-7 kHz region were selected to be sensitive to resonances excited by small 

impacts as the gear teeth surface starts to degrade. GM frequency and harmonics amplitude is 

expected to rise as degradation progresses. Overall signal features such as RMS or Crest Factor  

   
Figure 3: Sensor location Figure 2: Gear pair Figure 1: Gear rig 
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(CF) are known for not being too sensitive to early stages of degradation, but are expected to 

rise with mechanical looseness and ancillary damage. AE feature extraction is based on basic 

time domain features including RMS, CF and K. Additionally, AE peak count was obtained as 

the number of points exceeding the threshold value, above background noise levels (0.3V). 

The probability density function of each CI was estimated using Kernel density estimation [16] 

to set the threshold values that differentiates between healthy (green) and degradation (yellow) 

state. Subsequently, the threshold was set using a confidence bound of 90%. A second threshold 

was used to determine the limit between the degradation stage and critical failure (red). As this 

threshold would typically require failure data that is rarely available in real life, a value of 1.5 

times the first threshold was used for simplicity. Once the data was classified in these 3 

categories using the estimated thresholds, a moving window was used to eliminate alarms 

produced by random variations, under the assumption that once a certain degradation 

mechanism starts, it cannot be reverted. Hence a new higher degradation category can only be 

reached when at least 5 observations in a moving window of 10 samples have reached a higher 

state. Under the same assumption, once a state is reached in a CI, it cannot go down again. 

The data fusion rules aim to combine all the extracted CIs into one single health indicator. In 

this case, it proposes 4 different health states: healthy system (dark green), degradation started 

but not confirmed (clear green), degradation confirmed (yellow), and critical state (red). The 

reasoning behind this is that the non-confirmed degradation can be used to inform the 

maintenance crew to follow closely the case, but not necessarily to inform the pilot in real time 

as the fault may be in the very early stages of degradation and does not require immediate action. 

That prevents unnecessary worries and adds confidence on the information provided by the 

condition monitoring system, as it only rises alarms that are confirmed by different indicators 

triggered systematically as expected from gear degradation knowledge. AE indicators can only 

trigger the transition from healthy to degradation, as they are very sensitive to incipient faults. 

Subsequently, the degradation needs to be confirmed by changes in key frequency CI’s, or 

impact sensitive CIs (K). Critical state has to be confirmed by overall vibration levels increased 

(RMS, CF). 

 

3 Results and discussion 

 
3.1 Gear degradation observed 

 

Figure 4 shows the observed changes at different points of the experiment. The brand new gear 

had some minor marks and scuffs in the axial direction from the manufacturing process. After 

2 hours of run-in, the teeth contact surfaces were smoothly polished. That was considered the 

starting point of the test. Four hours later, some minor pitting marks were observed in the central 

area of the contact surfaces. As the test progressed, the amount of pitting observed grew, 

initially expanding laterally and later affecting most of the contact surface. After 10 hours of 

testing, in addition of generalised pitting, a significant amount of material had disappeared from 

the central area of the contact surface. That was considered as the point where damage reached 

a critical level. Thirteen hours into the test damage in the contact surfaces was severe, the 

original involute profile was completely distorted, and deformation in the axial direction 

appeared. The test was stopped at this point to avoid damage in the rig. 

 

3.2 Signal analysis results 

 

Figure 5 (top) shows the results obtained for the 19 CI’s extracted after applying the 

thresholding method described in 2.4. The 4 hours of test after the run-in period were considered 
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 Figure 4: Gear degradation observed 

Figure 5: Computed CI's; after thresholding (top), after moving window (middle), inferred health state (bottom) 
 

healthy operation, as no surface damage was observed. This period was used to obtain the 

threshold value for each CI. As shown in Figure 5 (top), around 10% of the observations in this 

period are classified as damaged (yellow), as expected from the 90% confidence bound used in 

the analysis of each probability density function. The moving window approach in Figure 5 

(middle) gets rid of these false alarms, and produces monotonic CI’s. The first CI to consistently 

reach a value above the threshold is the AE peak count, around 3.2h after the start of the 

experiment. That moves the rule-based inferred health state from healthy to “fault detected but 

not confirmed” (clear green) state. The next indicator to reach a consistent yellow value is 

energy in the 4-7 kHz region around 3.85 h into the experiment, confirming the presence of the 

fault and changing the state of the inferred CI. Other indicators such as K, GM and some gear 

specific indicators are triggered later, further confirming the fault detection. The first indicator 

to consistently reach the critical state is energy in the 4-7 kHz range around 9.6h into the test, 

but according to the rules’ logic, the inferred CI moves to critical state when RMS reaches 

critical values after 9.9h, indicating overall increased levels of vibration. The inferred health 

state obtained using rules based on gear damage and signal processing knowledge is consistent 

with the observations during the test, and only uses statistical analysis from healthy data for 

threshold estimation. 

       

New  After run-in After 4 hours After 6 hours After 10 hours After 13 hours 
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4 Conclusion 
 

The use of multiple sensors and multiple condition indicators can enhance the sensitivity of a 

fault detection system, as it allows the detection of different physical phenomena as the fault 

progresses. However, this approach complicates the interpretation of the data, and often it is 

required to merge the CI’s to give the user concise but yet precise information. Using logical 

rules based on engineering knowledge about degradation mechanisms can provide a simple but 

reliable and traceable way of solving that issue. The results obtained in this study using 

accelerated gear degradation data from AE and vibration measurements show how damage 

alarms are triggered systematically during the different stages of degradation, and how the rules 

proposed provide an inferred CI that is reliable and robust. Future work will look into further 

signal pre-processing to account for changes in operating conditions (speed, torque, 

temperature, etc.) and compare the performance of simple rule-based CI combination 

approaches with state of the art data fusion algorithms. 
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