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Abstract 

Remaining Useful Life (RUL) of a machine is the expected life or usage time remaining before 

the machine requires repair or replacement. Reliable RUL estimation can bring many benefits 

to OEMs and machine operators, such as cost saving through optimised maintenance 

scheduling, longer machine uptime, and reduced unexpected downtime. It also opens the 

possibility of creating a new revenue stream by providing Predictive Maintenance as a service. 

In this work, we use the N-CMAPSS dataset to describe a workflow and solution to achieve 

two goals: (1) detect and classify faults in a turbofan engine; (2) estimate the RUL once we 

detect performance degradation.  

 

We analyse, pre-process and extract/engineer key features from the multivariate time series raw 

sensor data by leveraging our understanding of how gas turbines operate (e.g., Brayton Cycle). 

We also analyse the performance of various engine submodules for different flight phases 

(climb, cruise, and descent). We train and compare multiple machine learning models before 

using a neural network model to differentiate between healthy operation and seven different 

types of faults in the turbofan engine. We train an exponential degradation model for RUL 

prediction after evaluating the features' monotonicity, trendability, and prognosability. In 

addition to fault detection and classification and RUL prediction, we also describe an approach 

to downsample the time series data without losing information relevant to our goals. 

 

Keywords: Predictive maintenance, remaining useful life, fault classification, N-CMAPSS, 

RUL 

 

Introduction 

Predictive maintenance can be considered the holy grail of industrial machinery equipment 

manufacturers and operators. It helps monitor the health of equipment to estimate its Remaining 

Useful Life (RUL). These techniques will help transition from reactive maintenance to a 

preventive and optimised maintenance strategy. There is immense value to gain from having a 

proactive maintenance strategy, such as cost savings [1], productivity increase for the 

maintenance crew, and even opening new service/revenue streams [2]. 

 

Various approaches are used for developing predictive maintenance techniques. We can broadly 

classify them as model-based methods and data-driven methods. This paper focuses on a data-

driven approach to aircraft engine prognostics and diagnostics. We used the N-CMAPSS dataset 

[3] to demonstrate a predictive maintenance development workflow, and we answer the three 

main questions for any predictive maintenance application: 

1. Is our aircraft engine or engine components’ health degrading at an abnormal rate? 

2. Which subsystem(s) is failing? 

3. How many flight cycles remain before the engine fails? 
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Figure 1 depicts a typical data-driven predictive maintenance development workflow. We will 

delve into key aspects of each stage in the workflow later. We will not focus on the deployment 

stage in this paper. We will briefly describe the N-CMAPSS dataset, explain each step of the 

workflow, our implementation details, and conclude with potential extensions to this work. 

 

 
Figure 1 Block diagram representing a typical data-driven Predictive Maintenance development workflow 

 

Description of dataset 

N-CMAPSS refers to a new and improved version of the CMAPSS dataset [4]. CMAPSS stands 

for Commercial Modular Aero-Propulsion System Simulation, the high-fidelity system model 

developed at NASA used to generate the dataset. The major improvements in N-CMAPSS 

compared to the original dataset and details of the data generation process can be found in [3]. 

The dataset contains eight run-to-failure trajectories for a fleet of 128 aircraft engines under 

different flight conditions. Failures can occur in either the flow (F) or efficiency (E) of different 

subsystems: fan, low pressure compressor (LPC), high pressure compressor (HPC), high 

pressure turbine (HPT), and low pressure turbine (LPT), as indicated in Table 1.  

Table 1 Overview of N-CMAPSS datasets [3] 

 

Each file contains the simulated results of aircraft engines as second-by-second flight data from 

up to 100 flights or engine failure, whichever comes first. Each unit experiences flights of a 

specific duration, indicated by flight class, and enters an "abnormal degradation state" randomly 

according to the file number and specified failure type. 

 

In the dataset, we have access to: 

• Generic airflow cycle measurements across the engine length, such as total temperature, 

total pressure, and flow.  

• Two rotor speeds, compressor stall margins, and some operational parameters (e.g., 

Mach number, altitude, throttle resolver angle, current cycle count, and flight class).  

• A binary health state indicator and RUL label. 

• A passenger/commercial aircraft goes through a well-defined mission: ground idle, take 

off, climb, cruise/mini-cruise, and descend. Only the climb, cruise, flight idle and 

descend information in this dataset is present. 

 

Workflow, Implementation and Results 

As described in the introduction, we followed the workflow depicted in Figure 1 with the 

iteration of some stages to improve performance based on our observations at each stage. The 

workflow and analysis described in this paper are implemented using MATLAB R2022a [5]. 

We will highlight the salient aspects of each step of the workflow in this section. 

Data Access & Exploration 
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It is well known that the data format can greatly influence the data memory footprint and the 

ease of building a pipeline for processing the incoming data from the asset. The original dataset 

was in HDF5 format. Based on our experience, parquet file format is conducive to big data 

analytics, given its efficient compression and encoding. Also, the built-in data constructs like 

parquetDatastore, tall array, and functions like groupsummary, rowFilter in 

MATLAB [6] make parquet a very performant format. 

 

We visualise all the datasets to understand better the various sensor data and its trend for 

different failure modes. For example, domain experts know that the temperature drop across the 

HPT is a good measure of its overall health [7]. We can visualise this to investigate the 

relationship between the remaining useful life recorded in the dataset (or the flight number) and 

the temperature drop. We can look across all HPT failures in our dataset to see if this is correct. 

Functions such as gscatter [6] help visualise these relationships, as shown in Figure 2Figure. 

The figure shows a strong relationship between the age of the engine and the temperature drop 

across HPT. 

 

 
Figure 2 (a) Scatter plot of Engine age vs Temperature and HPT Entry temperature, (b) Histogram of count of flights vs the 

temperature drop across HPT 

Data Pre-processing and Feature Engineering 

As with most sensor data, you need to clean and transform the raw data to create/identify the 

right set of condition indicators for any given asset. This is true even in N-CMAPSS dataset. 

Figure 2 depicts the simplified data pre-processing steps we used in our work.  

 

 
Figure 2 Representation of the data pre-processing steps 

Smooth data: Each flight contains climb, cruise, and descend phases, impacting the engine 

operation differently. We investigated whether data from some flight phases are more useful 

for identifying faults. Smoothing the differences in altitude will give us a cleaner way to apply 

a threshold to determine when the aircraft is in each flight phase, as shown in Figure 4.Figure 4 

 

Segment flight data: In smoothed plot, it becomes clear from the smoothed data when the 

aircraft is climbing, descending, or cruising. We can now apply a threshold to identify the flight 

phases and colour-code them for easy analysis. The threshold value was specified after 

experimentation with single-flight data and scaling it up for the whole dataset. 

 

Reduce data: As we build this data up by recording more flight data, the storage costs of 

retaining the complete dataset and processing time to train our algorithms will increase. Instead 

of simply downsizing, we extract change points from each sensor trajectory to retain its shape 

to reduce the data while maintaining enough useful information. We easily achieved this data 

reduction using the findchangepoints algorithm in MATLAB [6]. We prototype the 

algorithm with one sensor data and scale it up to apply it to the entire dataset (Figure 4). We 
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were able to reduce the memory footprint from 18 GB to 7GB with this technique. A word of 

caution: this approach may not be a good technique if there are features of interest in the 

frequency domain. We extracted hundreds of features from the N-CMAPSS dataset. However, 

not all are great indicators of different module conditions in the turbofan engine. In the Feature 

Engineering stage, we evaluate these extracted and created features and rank them to identify 

the most valuable features for training our AI algorithm. We semi-automated this process using 

MATLAB's Diagnostic Feature Designer app [6].  

 
Figure 4 (a) Smooth data, b) Flight phase segmentation based on threshold, c) Reduction of data using changepoints 

 

Figure 5 Feature ranking based on importance score using the ANOVA algorithm 

Engine behaviour is different in each flight phase. Therefore, we explore features from each 

flight phase individually. We focused on time-domain statistics such as the mean, standard error 

of the mean, standard deviation, skewness, variance, minimum, maximum, and range. Initially, 

we extract many more features than what will be used in our AI model training. The goal is to 

rank the extracted features based on their predictive power to identify faults. We extracted a 

total of 361 features from the dataset, and based on the ANOVA algorithm, we selected the top 

25 ranked features (Figure 5). 

AI modelling 

We aim to answer two critical questions for any predictive maintenance application in the AI 

modelling stage. First, which subsystem of the turbofan engine is failing? For this question, we 

treat it as a fault classification problem. Second, what is the remaining useful life of the turbofan 

engine? We estimate the number of flight cycles the engine can operate before it needs to be 

scheduled for maintenance. 

 

Fault classification: We train a set of machine learning models using the selected features and 

corresponding health labels. Using the Classification Learner app, we can train all the models 

in parallel and then compare and evaluate their performance with the test data using a confusion 

matrix and looking at the prediction accuracy (Figure). In our tests, narrow neural network 

models using cruise phase data were the best-performing model for turbofan engine fault 

classification. 
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RUL Estimation: Estimating the RUL is a crucial part of the predictive maintenance solution. 

Together with fault classification, we will be able to give a complete picture of the health of the 

turbofan engine – which part is failing and how much time remains before requiring 

maintenance action. 

 
Figure 6 Machine learning model training and evaluation for fault classification 

We need to relook at the required features for RUL estimation to get the best RUL prediction. 

As discussed in our data pre-processing section, we find temperature difference and pressure 

ratio across various subsystems as a good measure of degradation. One of the ways we evaluate 

the features is by estimating the trendability of each feature. Before finalizing the list, we 

visualised and evaluated various engineered features (not part of the dataset). It shows the health 

indicator trends for HPT and LPT failure. For HPT failure, the temperature drop across HPT 

and the pressure ratio across LPT are good health indicators for LPT failure. 

 
Figure 7 Plot shows the trend of the health indicators for all engine experiencing HPT+LPT failures 

We found the Exponential Degradation model among the various RUL estimator models to be 

the most suitable for this use case. The main reason is that the dataset has multiple failure mode 

events simulating in parallel. While one of the modules is degrading and still has some 

remaining useful life, the other engine module witnesses an EOL (end-of-life). We use a pre-

defined threshold value based on historical evidence in the exponential degradation model. 

 

We can now use the selected health indicators to fit RUL models for each failure mode. 

Combined with the fault classification model, we can also provide a complete classification and 

RUL estimation workflow. As a first step towards building an engine health monitoring 

dashboard, we visualise the evolution of the health indicator, estimated RUL, and the 

probability density function of RUL as new data from various engine unit streams into the data 

processing pipeline. 

Conclusion 

We have demonstrated a streamlined workflow in this work for the development of a predictive 

maintenance application that gives two important pieces of information: the failing 

subsystem(s) and the RUL estimation. We touched upon all the key stages in the development 

workflow and showcased an approach to reduce the dataset size without losing useful dynamics 

and trends in the sensor data. We described our method in a linear fashion.  
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Figure 8 Visualisation of health indicator trends, RUL estimation and Probability Density Function of RUL as new data 

streams into the data processing pipeline 

However, developing a robust and reliable analytics pipeline requires iterating over each stage 

and improving the prediction performance, whether it is through enhancing data pre-processing, 

featuring engineering and selection, or picking the right AI model. Even a seemingly simple 

factor such as the data format can significantly impact the memory footprint, computation time, 

and ease of data engineering. Though we demonstrated the workflow using a turbofan engine 

example, we believe this approach can be generalised for any industrial machinery. 

 

There is potential to extend this work by exploring various deployment options, whether to a 

cloud computing platform or as a desktop application for offline data analysis. Deployment of 

the feature extraction module to edge devices to reduce memory storage and data transmission 

cost is also worth exploring. The use of Deep Learning techniques for RUL estimation could 

also be another method to explore. 
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