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Abstract 
 
Condition monitoring of multi-stage planetary gearboxes is a complex challenge given the fact 
that gears the large number of rotating subcomponents. Typically, the large number of gears 
creates many harmonic excitations masking bearing signatures. Different state-of-the-art 
harmonic removal methods, e.g. cepstrum liftering, are available. Such methods have been 
shown to be automatable. However, exact characteristic frequency values are not always known 
for such gearboxes in commercial systems. Estimation of gear teeth numbers has been shown 
in literature. Bearing frequency determination is much more challenging. Deep learning 
methods can offer a solution. Once the harmonic content is removed, focus can be on the 
detection of modulations linked to bearing problems. Spectral coherence methods have shown 
to be highly reliable for such detection. However, if no info is available about normal behaviour 
in the coherence maps it is essential to detect which modulations are changing over time. This 
paper investigated the use of deep learning auto-encoders trained on spectral coherence maps 
as core component in an anomaly detection framework to identify changes in modulations. The 
auto-encoders are trained with large sets of healthy data. In this way we maximally use available 
data and avoid the need of large sets of labelled failure data. Typically, such data is not available 
for most operators. To illustrate the methodology data of six offshore wind turbines is used.  
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Introduction 
 

Condition monitoring (CM) targeting fast and accurate detection of problems is an important 
aspect in a typical predictive maintenance strategy, since the logistics of spare parts and repair 
equipment (e.g. crane vessels for wind turbines [1]) need to be optimized to avoid large 
downtimes. Faults need to be detected early to allow for alarming. However, providing a general 
alarm as a diagnostics feature does not suffice. CM methods need to be able to distinguish 
between the fault types and pinpoint the analyst to the subcomponent that needs to be replaced. 
Typically, the characteristic frequencies linked to the rotational fault signature are used for this 
purpose. Nonetheless, many end-users of machines have limited access to the details of these 
frequencies as they are not always disclosed by the manufacturer or different machine variants 
can have slightly different subcomponents (e.g. bearings). In literature, methods exist to 
estimate the characteristic frequencies linked to gear teeth numbers. An example is the method 
of Sawalhi and Randall targeting the use of a fine-tuned harmonic-sideband cursor approach 
[2]. For the estimation of bearing fault frequencies these methods are existing much less. An 
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important aspect to this is that bearings typically experience a non-deterministic nature due to 
the slippage of the rolling elements. Another challenge is that healthy bearings typically do not 
show fault frequencies. As such the healthy data is not useful for a bearing frequency estimation 
approach. Bearing frequency agnostic methods are needed that can learn the behaviour of a 
healthy vibration signal and alarm upon changes specifically linked to faults. This paper targets 
such a methodology by leveraging deep learning methods in combination with advanced signal 
processing methods.   

Methodology 
 
The proposed methodology targets a multi-step learning approach that can classify data 
according to healthy and faulty behaviour and pinpoint to the fault type present in the system. 
These steps are schematically shown in Fig. 1 and are discussed in the following subsections.    
 

 
Fig. 1:  Schematic overview of the fault detection and classification approach. 

Signal processing 
 

Complex gearboxes contain multiple gear stages resulting in many harmonic disturbances. 
These mask the bearing content and need to be removed to allow further diagnostics targeted 
towards bearing faults. Two possible harmonic removing methods that we explored in this 
context are: cepstrum based harmonic removal [3,4,5] and cepstrum pre-whitening [4,6]. In the 
former, discrete quefrencies are removed by means of a harmonic lifter. This requires 
knowledge about the characteristic gear frequencies. Thus, this is only possible if this 
information was retrieved (e.g. using a harmonic-sideband cursor). In case this information is 
not available, the cepstrum can be liftered by means of a pre-whitening approach. This method 
sets the whole real cepstrum to zero, except for zero quefrency. For this paper, we opt for a 
cepstral pre-whitening approach. This step is optional in case the harmonic orders do not 
substantially disturb the spectral coherence map constructed in the next part of the signal 
processing.  

Subsequently, the cyclo-stationary properties of the signal are extracted by constructing the 
two-dimensional cyclic spectral coherence map [7]. The magnitude of the spectral coherence 
ranges from 0 to 1 and forms a very useful detection method for second-order cyclo-stationary 
signatures. As such it can be seen as the spectral correlation of the whitened signal. The 
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coherence map allows for the tracking of the amplitude of the candidate modulating frequencies 
linked to the potential characteristic fault frequencies of gears and bearings. In this paper we 
opt to extract changes at these frequencies by means of an anomaly detection approach that 
compares actual coherence maps to predicted coherence maps using the deep learning approach 
discussed in the next subsection.     

 
Deep learning 
 

For the prediction of the coherence maps we use CNN based autoencoders. Such an 
unsupervised deep learning method first encodes the input data to a compressed representation. 
In a second step it decodes the compressed representation to obtain a reconstruction of the input. 
Thus, the autoencoder consists of three parts: the encoder, feature representation, and decoder. 
The autoencoder cannot perfectly reconstruct the input. Depending on the complexity of the 
underlying learning network and the amount of training data used, the autoencoder is able to 
capture and thus reconstruct fewer or more characteristics of the input signal.  

 
Training approach  
 

At the start of the training process the node weights are randomly initialized. Then, a forward 
pass is done for each mini-batch of coherence maps using the current weights. A reconstruction 
of that mini-batch is obtained as output. The error is calculated between the original and 
reconstructed mini-batch. The mean square error is used as loss function to minimize: 

𝑀𝑆𝐸 = 	 !
"
∑ (𝑥# − 𝑔(𝑓(𝑥#)))$"
#%!                                     (1) 

This error is propagated backward and the contribution of each of the weights to the error 
determined. The weights are updated by means of the gradient descent method.  

 
Anomaly detection  
 

Finally, the deep learning model needs to be part of an anomaly detection and fault classification 
framework. The autoencoder is an unsupervised learning method. It allows to generate an 
expected coherence map. This expected behaviour is compared to the actual coherence map to 
generate a residual map. For each time instance the residual maps are combined into one 
residual map over time with on the ordinate the order frequencies and on the abscissa time.  

Thresholding within this residual map allows to identify changes in modulations linked to 
characteristic frequencies of bearings and gears. The threshold values are determined by the 
maximum residual values under normal machine operation.  
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Fault classification 

As mentioned in the introduction, not all operators have access to the characteristic frequencies 
of the machine. This implies that modulations can be identified by the proposed methodology, 
but they need to be classified to gain insights in their potential meaning. To allow for this fault 
classification an engineering rules framework is used. We encode the knowledge that we have 
about the system. First of all, we know the speed of the system. In case no true highly detailed 
encoder is available such speed information can be derived from the acceleration signal itself 
[8]. This allows to classify detected modulations from non-speed related behaviour. Typically, 
this step will reduce most of the random anomalies from interesting ones. Second, we aim for 
cyclic orders that are present at different carrier frequency bands. This classifier step allows to 
distinguish further between strongly pronounced modulations and increases thus confidence 
that indeed a fault is present. It should be noted that the certainty is strongly linked to the amount 
of information that the user has about the system itself. The fewer details, the more difficult to 
pinpoint to a specific subcomponent of the overall system.    

 

Experiments 
 
The proposed method is validated by means of data from six offshore multi-megawatt wind 
turbines. The rated power of the machines is in the range of 2-4MW. Three years of data is 
available with measurements taken under stable conditions for a wide variety of operating 
conditions spanning the wind turbine power curve. Data is collected for 10s at a sampling 
frequency over 20kHz. We use more than 100 data samples per turbine per year for the analysis.  

One turbine experienced an intermediate speed stage fault. This case is used to validate the 
detection potential of the method. Five turbines are healthy and serve as benchmark for method 
robustness against false positives.  

To train the autoencoder model 3624 coherence maps are used (about 80% of the dataset of the 
five healthy turbines). 20% of the dataset of the 5 healthy turbines is used for validation of the 
model quality to represent healthy behaviour. The mini-batch size is 16. To determine the 
thresholds for anomaly alarms in the condensed residuals coherence map over time the 99th 
percentile for the training dataset is determined.  

 

Faulty case 

Fig. 2 shows the results for the intermediate stage fault. The figure represents the alarming plot 
versus time based on the residuals generated by the anomaly detection framework. The fault 
classification identifies that after month 11, the BPFI order of 946 is clearly visible as well as 
integer multiples. This increases confidence that indeed a fault is present. In this case we can 
link this to the specific fault in the system. If no detailed characteristic frequencies are known, 
it is still possible to identify this situation as a fault. However, pinpointing to the exact problem 
difficult.   
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Fig. 2: Alarm map for the faulty turbine case. The red points represent alarm level 2, the 
yellow points alarm level 1 and the blue points healthy behaviour  

 

Healthy cases 

Fig. 3 shows an example of a healthy case. It is clear that no consistent orders are marked in the 
alarm graph and thus that no fault is present. This was the same for the other healthy cases and 
underpins the robustness of the approach.   

 

Fig. 3: Alarm map for one of the healthy turbine cases. The red points represent alarm level 
2, the yellow points alarm level 1 and the blue points healthy behaviour  
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Conclusions 
 

This paper provided a method for the determination of bearing faults in an automated way. The 
method was a hybrid exploiting signal processing methods with deep learning using 
autoencoders. The method combined unsupervised learning using anomaly detection with a 
fault classification approach to automatically classify faults based on engineering insights. 
Depending on the amount of known information about the system (e.g. characteristic 
frequencies) the method can provide insights in which subcomponent the fault is present.  
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