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Abstract 

 

This session will focus on a deep dive of the data cleansing, condition monitoring, and model 

development phases. To illustrate, we will be using two technical data sets: (1) turbine run to 

failure data and (2) wind turbine main bearing prognosis. We examine data cleansing 

methodologies and the different numerical techniques to predict remaining useful life using 

survival, degradation, or similarity models, depending on your system data. 

 

While a full predictive maintenance solution to estimate remaining useful life requires data, 

which takes time to gather and process, early gains can be achieved through condition 

monitoring. We will spend some time dissecting this approach and how to use condition 

monitoring algorithms to develop traffic light dashboards as a precursor to predictive 

maintenance maturity. 
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Introduction 

 

This paper walks through a deep dive of a standard predictive maintenance workflow, which 

nominally follows the following steps: 

 

1. data import and exploration 

2. feature extraction and postprocessing 

3. feature importance ranking and fusion 

4. model fitting and prediction 

5. performance analysis. 

 

This relates the central “dashed” region of the block diagram shown in Figure 1. 

 

 
Figure 1 – Block diagram of a typical data driven predictive maintenance workflow. 

 

It is important to note that this paper will not discuss the final, critical steps of deployment and 

model drift maintenance of a predictive maintenance. Instead, it will focus on the initial 

development of a model. Conceptually, drift detection is merely an extension of this training 

workflow, which carries on throughout the plant’s useful life, somewhat like a continuous 

improvement quality assurance process. 

 

The data set that this deep dive is based on was collected from a 2 MW wind turbine high-speed 

shaft driven by a 20-tooth pinion gear [1]. An interesting facet of this data set is that it shows a 

very good use case for high-fidelity analysis on the turbine rather than streaming and central 
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processing, specifically for data reduction. To capture the system dynamics, particularly the 

high-frequency harmonics of a bearing fault, the data was captured at a sample rate of 

approximately 100kHz. However, a continuous-time signal captured at 100 kHz for a single 

channel of double-precision data would result in a data stream of 800 kb/s, or ~40GB per day, 

per turbine. This level of data capture is unnecessary, and the edge controller was programmed 

to sample six seconds per day, which is a much more manageable 5MB per turbine per day. 

 

Data Import and Exploration 

 

The first step in any predictive maintenance is importing the data for preliminary exploration. 

Ideally, the exploration would be graphically driven because, intuitively, graphs are easier to 

interpret than columns of figures. This step is easier for lower dimensional data than higher as 

humans can more readily interact with three dimensions than four or more. For the remainder 

of this paper, we will refer to the data set as an ensemble, which is where each member of the 

ensemble represents one six second measurement for the remainder of this paper. This ensemble 

structure allows us to associate metadata at the relative levels of the ensemble, specifically: 

 

1. at the day level, where we can associate lifetime data such as number of days operating, 

average weather conditions, etc. 

2. at the sample level, where we can associate technical data such as sampling frequencies 

and tachometer specifications. 

 

It can be helpful to visualise the raw signals, as shown in Figure 2, when beginning exploration. 

In this case, we observe what appears to be a trend in the signal impulsiveness, as the measured 

amplitude seems to increase through the 50 days of measurement. 

 
Figure 2 – Raw acceleration plot per ensemble 

Next, as this data is from a rotational plant, we know there will be changes in the power 

spectrum and other spectral quantities as the bearings degrade. In this case, we focussed on 

spectral kurtosis with a window of 128 samples (~1.3 ms) because spectral kurtosis has been 

used with success in wind turbine prognosis [2], as shown in Figure 3. 
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Figure 3 – evolution of spectral kurtosis as a function of operating days 

 

In this figure we have indicated fault severity on a scale of zero to one, indicative only of the 

normalised date between the start of the measurements and failure and so intended as a visual 

identification of temporal progress. However, we can see from the peaks in the spectral kurtosis 

at around 10 kHz through a gradual increase in strength, indicative of a degradation signal. This 

strongly indicates that spectral statistics would be useful as predictor signals.  

 

Feature Extraction, Importance Ranking and Fusion 

 

With the indicators discussed above, the next step is to again reduce the time domain ensemble 

components down to representative statistical measures. This is a form of dimensional reduction 

that shunts the compute time into a pre-processing step, simplifying model creation. The 

measures chosen were: 

 

1. Time domain: mean, standard deviation, skewness, kurtosis, peak to peak interval, 

signal RMS, crest Factor, shape factor, impulse factor, margin factor, and energy. 

2. Spectral kurtosis domain: mean, standard deviation, skewness, and kurtosis. 

 

Because most remaining useful life models assume a monotonic trend, the raw indicator signals 

must be smoothed, as shown in Figure 4, and then ranked on monotonicity, as shown in Figure 

5. Finally, we can compute a numerical value for monotonicity, 

 

Monotonicity(𝑥𝑖) =
1

𝑚
∑

|number of positive diff(𝑥𝑖
𝑗
)−number of negative diff(𝑥𝑖

𝑗
)|

𝑛−1

𝑚
𝑗=1   (1) 
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Figure 4 – Comparison of raw and 

smoothed data 

 
Figure 5 – monotonicity estimates of the 

engineered features.  

 

This monotonicity value can then be used to filter out signals with low monotonicity. We set 

the threshold at 0.3, which reduced the data set from 15 signals to five. Further, we can fuse 

these final five signals down using principal component analysis, two principal components, as 

shown in Figure 6. This indicates that the first two principal components have a clear trend as 

their magnitudes increase through the working life, with a generally monotonic trend in the final 

25 days to failure. 

 

 
Figure 6 – scatter of the first and second principal components coloured by day of 

measurement 

 

Model Fitting 

 

The final step here is to fit an exponential degradation model, 

 



NON-PEER REVIEW 

 

20th Australian International Aerospace Congress, 27-28 February 2023, Melbourne 

 

 ℎ(𝑡) = 𝜙 + 𝜃𝑒𝛽𝑡+𝜀−
𝜎2

2  (2) 

 

where h(t) is the health indicator as a function of time, ϕ is an intercept term and generally 

considered to be constant, θ and β are semi-random parameters that determine the slope of the 

model, while ε is a Gaussian white noise yielding to 𝑁(0, 𝜎2). The final term, −
𝜎2

2
 is to satisfy 

the expectation of h(t) 

 

 𝐸[ℎ(𝑡)|𝜃, 𝛽] = 𝜙 + 𝜃𝑒𝛽𝑡. (3) 

 

Procedurally, we shift the health indicator such that the first value is zero and then use a standard 

fitting technique to fit the model. New daily data is fed iteratively to evaluate the model, with 

the model “remembering” its state from day to day. For example, the model state and life 

predictions for day 32 are shown in Figure 7. 

 

 
Figure 7 – example evaluation of remaining useful life model at day 32 

 

Model Performance Evaluation 

 

A common performance method check for a remaining useful life model is an α-λ plot, shown 

in Figure 8, in which α is set to 20% where the probability that the estimated remaining useful 

life is between the α bound of the true remaining useful life. In this case, the match begins 

poorly, as would be expected, where there is relatively little known of the fault or for the model. 

We assumed a linear degradation of RUL, which, based on an inspection of the spectral kurtosis, 

may not be correct. This can only be improved by dismantling the gearbox and measuring the 

bearing failure profile. However, as more data points are added to the prediction, the model 

tends to the true value, so despite the previous uncertainty, we have confidence in the final 

lifetime predictions – as we tend to fail, we have confidence. 
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Figure 8 - α-λ plot of model performance 

 

Conclusion 

 

This paper has presented a deep dive into a sample predictive maintenance workflow based on 

a set of wind turbine data. We have walked through the initial ingestion of the data, 

exploration, and feature engineering through to fitting a model based on reduced and fused 

data sets before evaluating the model performance via an α-λ plot. As discussed in the 

introduction, the final step not discussed here is the deployment of the model into operations 

and handling of model drift. 
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