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Abstract 
 

This paper investigates the use of Gaussian wavelets for tracking the degradation of rolling 

element bearings. Spalls in bearing raceways or rolling elements lead to impacts which excite 

structural resonances. Gaussian wavelets are shown to correlate well with these structural 

resonances when they appear in the measured vibration signal. Impacts are deemed to be 

detected in the vibration signal whenever the correlation with the Gaussian wavelet exceeds a 

predetermined level. As the spalled area increases in the bearing over time, the corresponding 

rate of impacts increases. Bearing degradation is tracked through monitoring the impact rate 

measured using the Gaussian wavelet. The technique is validated on vibration data obtained 

from a naturally occurring fault in the epicyclic planet gear bearing in a helicopter main rotor 

gearbox. 
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Introduction 
 

Many vibration analysis techniques for rolling element bearing health monitoring have been 

developed to date. A recent overview [1] shows that the focus has been primarily on detection 

and diagnosis. A diagnosis informs you that a bearing is faulty, but does not provide 

information about how rapidly the bearing is deteriorating, or what its remaining useful life is. 

These are important considerations when developing or implementing maintenance policy. 

 

When a rolling element passes over a localised raceway spall, or a spall on a rolling element 

passes into the contact zone, the corresponding impulse response excites structural resonances. 

These structural resonances are localised not only in frequency, but also in time, due to 

structural damping. Wavelets are also localised in both frequency and time, and it is this 

property which has been used successfully for bearing fault diagnosis [1, 2].  

 

The approach developed in this paper is intended to be applied after diagnosis of a fault, and 

focuses on tracking bearing degradation over time. In essence, the approach uses an optimal 

wavelet to mimic the bearing fault impulse response in the measured vibration signal. A 

wavelet is deemed optimal if it is well correlated with the bearing fault impulse response in 

the vibration signal. As the number of spalls increase over time (i.e. as the bearing degrades), 

the rate of impulse generation, and consequently the wavelet correlation rate, also increase 

over time. Thus, monitoring the correlation rate provides a means of monitoring the 

degradation of the bearing. 

 

The idea described above is dependent on a good correlation between the wavelet and the 

impulse response to the bearing fault in the measured vibration signal. For this reason, 

Gaussian wavelets are chosen because of their general similarity to transient structural 
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vibrations [3]. However, the wavelets still need to be optimised (or tuned) to the specific 

structural response of the mechanical system of interest. 

 

 

Procedure for Tracking Bearing Degradation 
 

The procedure for tracking bearing fault degradation can be divided into two main steps. The 

first step is to find the optimal Gaussian wavelet that produces a good correlation with the 

bearing fault impulse response in the measured vibration signal. A conditional optimisation 

using the Continuous Wavelet Transform (CWT) is used to find the optimal Gaussian wavelet 

parameters. To facilitate this, Gaussian wavelets are introduced first before details of the 

optimisation procedure are presented. 

 

The second step, Degradation Monitoring, involves using the optimal Gaussian wavelet 

parameters found in the first step to monitor the degradation of the bearing over time. A 

single-scale CWT, using the optimal Gaussian wavelet parameters, is used to identify the 

bearing fault impulse responses in the measured vibration signal. A cumulative count of the 

number of correlations is extracted from the single-scale CWT by first zeroing all points of the 

CWT which fall below a pre-set threshold, and then integrating this modified CWT over time. 

The cumulative correlation count can then be used as an indicator of the cumulative 

degradation of the bearing over time, and its derivative to estimate the rate of degradation. 

 

Gaussian Wavelets 

 

The family of Gaussian wavelets are derived from the exponential (Gaussian) function, 
    20 exp ttG  , where   ,t . For  2, 1,n , we define the nth Gaussian wavelet, 
  tG n , to be the normalised  nth derivative of the Gaussian function G

 (0)
(t), that is: 

 

      tG
dt

d
tG

n

n

n

n 0 , (1) 

 

where n  is a normalisation coefficient. Some examples of Gaussian wavelets are shown in 

Fig. 1. 

 

 
Fig. 1: Gaussian wavelet examples for orders n=1, 2, 3, 30 and 100 
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Finding the Optimal Gaussian Wavelet 

 

The CWT is used to find the Gaussian wavelet which best simulates the impulse response of 

the bearing fault. Let y(t) denote the vibration signal, then the CWT of y(t) using a Gaussian 

wavelet of order n is given by: 

  

      












 
 


 d

s

t
GytsnW n,, , (2) 

 

where s is referred to as the scale parameter. Note that whilst s can be any real number, for this 

application sufficient fidelity is achieved through considering only positive integer values for 

s, i.e.  2, 1,s . 

 

For digital applications, the vibration signal and Gaussian wavelet are sampled at discrete time 

points only. Consequently, to avoid aliasing when applying Eqn. 2, the scale, s, must be 

sufficiently large for the wavelet order n. Conversely, for each scale s there is a maximum 

wavelet order n. To facilitate this, an empirical relationship was derived which provides an 

upper bound for n as a function of s: 

 

   112
22  sn  . (3) 

 

Finding the optimal wavelet parameters is formulated as a constrained optimisation problem 

in terms of the CWT of the bearing vibration signal: 

 

    snEsn
sn

,maxargˆ,ˆ
,

 , (4) 
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1
,  (5) 

 

where n̂  and ŝ  are the optimal wavelet order and scale respectively. When performing the 

optimisation in Eqn. (4), the following two constraints are employed: 

 

(C1) The wavelet parameters, n and s, are constrained to satisfy Eqn. 3.  

(C2) The maximum should be taken from a proper “turning point” of E(n,s).   

 

The first constraint is necessary to avoid aliasing. E(n,s) is said to reach a proper “turning 

point” at the specific point (n,s) if (i) E(n,s) > E(n-1,s) and (ii) E(n,s) > E(n+1,s). In some 

cases, the inequality in (ii) cannot be assessed because the specific pair (n+1,s) does not satisfy 

the constraint in Eqn. 3. This is further illustrated in Fig. 3 in the section “Finding the Optimal 

Gaussian Wavelet Parameters” below. 

 

In order for the solution of Eqn. 4 to be well correlated with the bearing fault impulse 

response, the signal to noise ratio of the impulse response must be reasonably high; i.e. the 

impulse response must not be masked by other signal components. For all but the simplest 

applications, this implies that y(t) be appropriately filtered to separate the bearing impulse 

response from the other signal components such as the gear meshing vibration and other 

unrelated spectral content. 
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Bearing Degradation Monitoring 

 

The optimal wavelet parameters, n̂  and ŝ , determine a unique Gaussian wavelet which best 

correlates with the bearing fault impulse response. At each point in time that a bearing fault 

impulse is generated, a corresponding peak will occur in the single-scale CWT,  tsnW ,ˆ,ˆ . 

 

The method proposed here is to obtain an estimate of the cumulative “count” of the peaks in 

 tsnW ,ˆ,ˆ  through the integration of a modified form of the single-scale CWT,  tsnW ,ˆ,ˆ . The 

modified form of the single-scale CWT, denoted  tsnw ,ˆ,ˆ , is obtained by filtering out the 

background noise using a pre-determined threshold level, 0w . That is, let    tsnWtsnw ,ˆ,ˆ,ˆ,ˆ   

for all t such that   0,ˆ,ˆ wtsnW   and   0,ˆ,ˆ tsnw  otherwise. Then, the following measure is 

proportional to the cumulative correlation peak count: 

 

  

t

dsnw
s

tC
0

2

2
,ˆ,ˆ

ˆ

1
)(  , (6) 

 

and its derivative with respect to time, )(tC , will be approximately proportional to the bearing 

fault impulse response rate, and thus to the rate of degradation of the bearing at time t. 

 

 

Bearing Fault Application 
 

Bearing Fault Test 

 

A Bell 206 helicopter main rotor gearbox was tested in DST Group's Helicopter Transmission 

Test Facility (HTTF) as part of the research program into developing condition monitoring, 

diagnostic, and prognostic capability for helicopter transmission systems. The Bell 206 main 

rotor gearbox is shown in Fig. 2.  

 

The test, which ran for approximately 160 hours, succeeded in initiating and growing a 

naturally occurring fault on the planet gear spherical-roller bearing. Spalling damage occurred 

mostly on the inner races as shown in Fig. 2, with some of the rolling elements also damaged 

(not shown). The photos in Fig. 2 were taken at the end of the test. There was very little 

damage to the outer race, which is integral with the planet gear.  

 

During the test, vibration data were recorded from accelerometers fitted to the gearbox 

housing in a number of different locations. Shaft rotations were tracked using tachometers 

fitted to both the input and output shafts of the gearbox. Wear debris were monitored in real 

time using a MetalSCAN
1
 debris monitoring system fitted into the oil scavenge line upstream 

of the oil filter. 

 

 

                                                           
1
 An oil debris monitoring system produced by GasTOPS, http://www.gastops.com/metalscan.php. 
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Fig. 2: Bell 206 main gearbox (left), planet gear and planet bearing (right) 

 

 

Bearing Signal Isolation 

 

Finding the optimal Gaussian wavelet requires a good signal to noise ratio for the bearing fault 

signal. The raw vibration signals recorded during the test are dominated by the complex 

harmonic series from the input pinon/bevel gear meshing, and the epicyclic gear meshing. 

Signal components related to the bearing fault are much lower in amplitude. The bearing fault 

signal must therefore be separated from these dominant spectral components before the 

wavelet method can be employed. 

 

Separation of the bearing fault signal was previously achieved by Dr N. Sawalhi, as described 

in Ref. 4, in which he also correctly diagnosed the planet bearing fault.
2
 The technique he used 

for separating the bearing fault signal from the gear meshing and other dominant spectral 

content was a combination of Discrete-Random Separation (DRS) and band-pass filtering. 

The same technique is applied for this analysis. 

 

Finding the Optimal Gaussian Wavelet Parameters 

 

The optimal Gaussian wavelet parameters are obtained using the DRS and band-pass filtered 

vibration signal, when the fault is in its incipient just-detectable stage, which occurs 80 hours 

into the test. A plot of E(n,s) for two values of scale s is shown in Fig. 3 (left plot). Each 

E(n,s) plot terminates at the maximum value of n determined by the constraint in Eqn. 3. The 

right side plot in Fig. 3 is a colour-map of E(n,s) over a range of (integer) scales and wavelet 

orders. The amplitude of E(n,s) is displayed on the map using a reverse grey-scale from 0 to 5, 

with amplitude increasing as the colour darkens.  

 

                                                           
2
 The analysis was performed blindly, i.e. Dr Sawalhi did not know what type of fault was present in the gearbox 

during his analysis.  
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Fig. 3: Left: E(n,4) and E(n,5). Right: E(n,s) order-scale colour-map 

 

The plot of E(n,4) illustrates how the constraint in Eqn. 3 can lead to a local maximum that is 

not a turning point. A similar result occurs for s < 4, although these results are not as obvious 

in the colour-map plot. 

 

For  E(n,5), a proper turning point and local maximum occurs at n = 69. In the colour-map 

plot it is clear that proper turning points (and corresponding local maxima) are obtained for 

5s ; however, the global maximum (at proper turning points) occurs at s = 5. Hence the 

optimal Gaussian wavelet parameters are, 69ˆ n  and 5ˆ s . 

 

Tracking the Degradation of the Planet Gear Bearing 

 

The optimal Gaussian wavelet, with parameters 69ˆ n  and 5ˆ s , was applied to the DRS 

and band-pass filtered planet bearing fault data. Due to the limited number of data sets 

available with the bearing in a healthy state, the threshold level, 0w , was set using a multiple 

of the maximum value of the CWT on the first available data file:  tsnWw ,ˆ,ˆmax05.10  . 

The value of the multiplier, 1.05, was not found to be significant, with the technique working 

well for values up to 1.4.   

 

A plot of )(tC  covering the duration of the test is shown in Fig. 4 (left). For comparison, the 

cumulative mass of wear debris obtained from the MetalSCAN sensor is plotted in Fig. 4 

(right).  

  
 

Fig. 4: Left: Gaussian wavelet correlation method. Right: Cumulative mass of wear debris 

 

The wear debris data can reasonably be expected to provide a good measure of the cumulative 

degradation of the bearing over time. A comparison of the two plots in Fig. 4 indicates that 

)(tC  has a very similar trend to the cumulative mass of wear debris; however, the first 
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significant increase in C(t) occurs at an earlier time (~105 hours) than that of the cumulative 

mass (~120 hours). Further testing will be required to determine the significance of this, e.g. 

whether it might be an artefact of optimising the wavelet to the filtered vibration signal at a 

particular point in the test, and whether it is repeatable in other experimental tests. 

 

 

Conclusions 
 

The method proposed in the paper uses Gaussian wavelets to track the degradation of rolling 

element bearings, and is applied post diagnosis. Vibration and wear debris data obtained from 

a full-scale test of a helicopter main transmission were used for evaluation. The Gaussian 

wavelet method was shown to perform well at tracking the degradation of the planet gear 

bearing for the duration of the test. The results shown in Fig. 4 may well be suitable for fusing 

vibration and wear debris data to predict the remaining useful life of rolling element bearings. 
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