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Abstract 

 

Mechanical signals are often a mixture of numerous components generated by distinct sources. 

The separation of these components is of high interest for machine condition monitoring, 

diagnosis and prognosis. An efficient way to accomplish this task is to apply a linear 

periodically time-variant filter, also known as the cyclic Wiener filter (CWF), assuming the 

signal to be cyclostationary. This requires a quasi-constant operating speed which can be very 

restrictive in practice. This paper addresses this issue by proposing an extension of the CWF 

to the variable speed case, exploiting the angle-time cyclostationary property of these signals. 

It is shown that the resulting filter has linear periodically angle-varying structure whose 

coefficients can be easily derived. The effectiveness of this filter as well as its superiority to 

the CWF is demonstrated on real vibration signals where the aim is to extract a bearing fault 

component from its noisy environment. 
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Introduction 

 

Mechanical signals are often a mixture of numerous components generated by distinct sources. 

The separation of these components is crucial for machine signal processing and can help in 

localizing, identifying and evaluating defects in mechanical systems. Cyclostationarity is a 

powerful framework to describe and process rotating machine signals. Under this assumption, 

the best way to achieve signal separation is to apply a linear periodically time-variant filter, 

also known as the cyclic Wiener filter (CWF), being the optimal solution in the least mean 

square sense [1]. Though an a priori knowledge of the signal periodicity is required, this 

filtering can still be referred as “blind signal separation” since no reference signal is used for 

the extraction of the signal of interest. Whereas the theory of the CWF was established by W. 

Gardner in 1993 [1], this filter was firstly applied in mechanical applications by Bonnardot et 

al. 2005 [2]. As advocated in Ref. [3], the capacity of the CS framework in describing 

machine signals is confined to the stationary regime case— i.e. when the operating speed is 

constant or stationary. Otherwise, cyclostationarity is jeopardized and the CWF turns 

unreliable no matter the signal is processed in time or angle. In details, rotating machines 

witness a repetitive occurrence of short-time events being related to its regular operation (such 

as combustion, piston slap, etc.) or to a certain dysfunction (e.g. a local fault). These events 

are likely to produce transient signatures whose properties are related to the system dynamics. 

These transients are time-invariant as they are typically dictated by time-differential equation. 

However, the recurrence of the events (and the transients) is due to the rotating motions of 

machine components. It is thus dependent on the machine kinematics and its evolution is 

inherently locked with the machine rotational angle. It is the presence of this (angle\time) 

duality what makes rotating machine signals unsuitable to be analysed within the 

cyclostationary (CS) framework when the systems operate under variable speed conditions. 

Consequently, the efficiency of the CWF is compromised since its periodicity can no longer 
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capture the time-varying periods of speed-varying signals. Conversely, proceeding with the 

same approach in the angular domain (e.g. after order tracking the temporal signal) would 

accommodate with the signal periodicity, but will certainly misestimate its time-dependent 

coefficients. This issue has been recognized in previous works and some solutions have been 

provided. Mostly, solutions are based on windowing the transients through a finite energy 

window whose bandwidth is constant in time and whose position is dictated by the angle 

through an explicit dependence. As far as the authors know, the formalization of such a filter 

has not been addressed yet. This paper comes in this context aiming at filling in this gap by 

extending the CWF to the variable speed case, exploiting the more general framework called 

“angle-time cyclostationarity”. This framework was specifically designed in Ref. [4] to 

describe rotating machine signals recorded under nonstationary operating speed. The paper is 

organized as follows: section 2 briefly reviews angle-time cyclostationarity and formulate the 

problem of blind signal separation. Section 3 proposes a solution based on the extension of the 

CWF to the variable speed case. Section 4 demonstrates the effectiveness of this approach on 

real vibration signal measured from the high-speed gearbox of a wind turbine. The paper is 

sealed with a conclusion in section 5. 

 

Problem formulation 

 

This section aims at formalizing the problem of source separation of mechanical sources 

through a scientific framework. As stated in the introduction, rotating machine signals 

recorded under speed-varying conditions are assumed angle-time cyclostationary, so the 

properties of this class of signals is first reviewed. Then, the blind signal separation problem is 

formalized.  

 

Angle-time cyclostationarity 

 

A signal  is said to exhibit angle-time cyclostationarity with cyclic orders (with unit 

“event per revolution”) , if its angle-time autocorrelation function,  

.                     (1) 

 

 is periodic with respect to  (   and  respectively denote the angle and time variables) [4]. 

Note that it has been assumed that a full cycle corresponds to 2π radians, that is  

expresses the evolution of the angle in terms of cycles (or revolutions).The latter condition 

implies the presence of non-zero Fourier coefficients associated with the order spectrum 

, viz 

                       (2) 

Its Fourier transform   

                 (3) 

defines the order-frequency cyclic power spectrum (OFCPS) at  having as unit [U2/Hz] ([U] 

is the signal unit), where  stands here for the spectral frequency. The OFCPS can be 

equivalently expressed in a more compact form as [4]: 

                                   (4) 
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where   is the cross-power spectrum and  

                (5) 

where    stands for the angular speed in [rad/s],  and 

. 

 

Blind signal separation 

The blind signal separation addressed in this paper specifically concerns the recovery of a 

signal of interest, being of AT-CS nature from a measurement which includes the latter with 

an unknown number of interferences and noises. Denoting by  the AT-CS signal of 

interest with cyclic orders , the “noisy measurement” can be expressed as follow: 

                         (6) 

where  stands for the noise being nonstationary in general and potentially exhibiting 

angle-time cyclostationarity with a cyclic order set . The issue of blind signal separation 

turns to find an optimal estimate of the signal of interest, say , by filtering  through a 

filter  (generally linear time-variant)  

                      (7) 

such as to minimize the mean square error between the estimate and the signal of interest, i.e. 

                              (8) 

In the stationary case, the solution to the problem above is a linear-time-invariant filter (i.e. 

) known as the Wiener filter, whereas the solution is linear periodically time-

varying filter (also coined as the cyclic Wiener filter) in the CS case.  

 

 

Proposed solution 

The extraction of speed-varying (i.e. AT-CS) signals is fundamentally different from the 

constant-speed (i.e. CS) case as the angle-time relation turns non-linear. This subsection aims 

at filling in this gap by changing the structure of such filter and extending its calculation to the 

more general AT-CS case. 

 

Linear periodically angle-varying (LPAV) filters 

For the filter to be able to optimally detect an AT-CS signal, its structure must jointly consider 

the angle and the time variables. Such a filter must then have a linear periodically angle-

varying (LPAV) structure. For an angular periodicity defined by the cyclic orders , 

such a filter takes the following form 

                         (9) 

where  are also LTI filters and  denotes the cardinality of the cyclic order 

set. It can be shown that the output-input relation of such a filter writes as 
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                   (10) 

where again  and . 

Interestingly, the structure of a LPAV filter turns to be equivalent to the sum of LTI filtering 

operations on a transformed version of the signal. The architecture of a LPAV filter is 

illustrated in Fig. 1. The calculation of the filter coefficients, ,is addressed in the next 

subsection. 
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Fig. 1:  The structure of a LPAV filter. 

 

 

Calculation of the filter coefficients 

Similarly to the CS case, if an angle-time cyclostationary (AT-CS) signal of interest  is to 

be extracted from its noisy measurement , the angle-time cyclic Wiener filter (AT-CWF) 

must then be designed as a LPAV filter whose own cyclic frequency set belong to that of the 

signal of interest. Under this condition, one can show that the following equation 

              (11)  

holds for 1<j<K, where K stands for the number of filter coefficients. These equations can be 

rewritten under matrix form: 

.                          (12) 

where  and  are  is a  

vector (  is the transpose operator),  is a  matrix such that 

. Note that  is a singular matrix so its pseudo-inverse returns the 

least mean square solution of this system. Interestingly, in the constant speed case CWF boils 

down to the classical CWF. 

 

 

Application to bearing diagnostic 

The application in this paper aims at extracting the vibratory component of a faulty rolling 

element bearing operating under variable speed conditions. The bearing has an inner race fault 

with characteristic fault frequency equal to 9.47 times the rotating frequency. The data are 
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publicly available and more information on the system can be found in Ref. [5]. Since the 

inner race fault signature is expected to appear at the harmonics of the inner race fault and 

sidebands spaced by the shaft frequency, the cyclic frequencies (respectively orders) of the 

CWF (respectively AT-CWF) includes then (i) the fundamental shaft average frequency 

(order), (ii) the fundamental inner-race average frequency (respectively orders) values and (iii) 

its second harmonic. The negative frequencies (orders) of the latter are surely considered. The 

window length of the Welch estimator involved in both algorithms is set equal to 210. The 

speed profile of the signal, the temporal representation of the signal, the CWF-based and AT-

CWF-based estimate are displayed in Fig. 2. As expected, the CWF-based estimate is way 

weaker than the AT-CWF-based estimate indicating a misestimation of the bearing fault 

component (see the close-ups in Fig. 3 for a more relevant interpretation). On the contrary, the 

vibratory fault component estimated by the AT-CWF is clearer revealing clear repetitive 

transients related to the fault. The application of the AT-CWF makes relevant the 

interpretation of the bearing component, enhancing its diagnosis and prognosis. 
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Fig. 2: (a) Speed profile in rpm, (b) the centred signal, (c) CWF-based and (c) AT-CWF-based 

estimate of the bearing fault vibratory component. Note that the scales in plots (c) and (d) are 

purposely kept the same for a proper comparison of the waveform energy. 

 

Conclusion 

 

This paper has addressed the problem of mechanical source separation when the system 

operates under fluctuating speed conditions. The problem has been theoretically formalized  

within the angle-time cyclostationary framework, offering a straightforward way to extend the 

cyclic Wiener filter to the variable speed conditions. The so-called angle-time cyclic Wiener 

filter turns to have a linear periodically angle-varying structure and its calculation is similar to 

that of the regular cyclic Wiener filter. The efficiency of the proposed approach was 

demonstrated on real vibration signals where the aim was to separate a fault vibratory 

component of rolling element bearing. The comparison between the classical and the proposed 

filter has asserted a clear superiority of the latter over the former. Such filtering is expected to 

enhance the fault detectability, diagnosis and prognosis of rolling element bearings. 
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Fig. 3: (a), (b) and (c) are respectively the close-ups between 2 and 2.05s of plots (b), (c) and 

(d) in Fig. 2. 
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