

The Role of Propulsion System HUMS in Maintaining Aircraft Availability & Safety

Flight Lieutenant Rashmin Gunaratne

Officer-In-Charge of Propulsion Systems Integrity in DAVENG-DASA

2019 HUMS Conference, Melbourne, Australia 26 Feb 2019

Disclaimer

- The content of this presentation and any associated documents is not Technical Product.
- It is simply the professional opinion of the individual providing it, and not the opinion of DG-DASA or any other DASA staff member.
- All the information provided in this presentation is UNCLASSIFIED.
- Platforms or technical information is deliberately not provided

Outline

- Career Background
- Role of PSI
- HUMS
 - Health
 - Usage
 - System
- Past, Present & Future
- Case Study 1 Availability
- Case Study 2 Availability & Safety
- Case Study 3 Safety
- Conclusion

Career Background

- Bachelor of Aerospace Engineering from RMIT
- Joined RAAF in 2009
- Engine Structural Integrity Manager C130H, C130J & AP-3C Orion
- MRH90 Acquisition Project Certification Engineer
- Hawk 127 Flightline Maintenance Officer
- MSc Thermal Power Cranfield University, UK
- PSI in DAVENG-DASA

Role of Propulsion Systems Integrity (PSI) in DAVENG-DASA

- ~30 engine types
- Subject matter experts in propulsion systems integrity for the Australian Defence Force (ADF)
- Performs Authority functions for all ADF propulsion systems
- 21J Design Organisation
- Typical Tasking
 - Acquisition advice
 - Approval of changes to type design
 - Approval of Unsafe Condition Assessments
 - Component lifing review coordination
 - Management of technical risks & life reductions
 - Overview of platform management
 - Development of HUMS specifications
 - Verification & Validation of HUMS

HUMS

Health	 Condition Monitoring (Wear Debris, RVI) Vibration Monitoring Diagnostics Prognostics Environmental Degradation Management
Usage Monitoring	 Cycle counting Hours counting Flight records Engine run history Operating parameters
S ystem	 More than just the hardware! Onboard/Offboard Data Validation Procedures & Training Analysis, Support

Past, Present & Future

Past

Present

Future

- Paper based, manual, first generation systems
- Minimal OEM involvement
- Minimal automation or data capture
- Local systems developed -FAMIS/CAMM/CAMM2
- Some basic level of condition monitoring

Past, Present & Future

Present

- Full digital transition (mostly)
- Increased OEM involvement
- Increased automation & data capture
- Use of commercial & bespoke recording systems
- Large quantities of data

Past, Present & Future

Future

- Automated data analytics
- Significant OEM involvement
- Exponential increase in data capture
- Automated prognostics
- Physics based algorithms
- More accurate lifing
- Automated condition monitoring & maintenance initiation
- Increased use of machine learning

UNCLASSIFIED

Case Study 1 – Availability - HUMS

- Squadron started to use an engine health monitoring system in 2009
 - Monitored the vibration characteristics, measured gas temperature (MGT) margin
 - Significant improvements in availability
- Due to posting cycles in 2014 no dedicated Engine Health Monitoring specialists at the SQN or the CAMO
 - Reduction in engine performance
 - increase in unscheduled removals, and
 - reduction in TOW. (Fly to failure approach...again)
- Mid 2016 saw 5 IFSD in 5 weeks as a result of worn compressors and low MGT margin
 - Root cause Loss of adequate health monitoring:
 - poor preventative maintenance
 - worn compressors
 - weather
- Aug 2016 saw a resurgence in engine health and condition monitoring
 - Fleet planning to schedule engine removals
 - Preventative maintenance to maintain engine health
 - Introduction of additional limits to components
 - Marked improvement in engine health (comparable to new engines)
 - Unscheduled removals has improved back to levels that were seen in 2013.

Propulsion System Maintenance Support

Unscheduled Removal Rate

Case Study 2 – Availability & Safety – Wear Debris Analysis

- Prior to WDA
 - Engines being removed for chip indications
 - Expensive exercise & limited availability
 - Aircraft on-ground awaiting OEM advice

- Introduction of WDA (DST Group & PSI in DAVENG-DASA)
 - Allowed for analysis of debris quick turnaround
 - Allowed for prioritisation of aircraft going on deployment

Case Study 3 – Safety – Mission Analysis

- ADF Missions
 - Multiple Missions
 - Complex Mission Definition
 - OEM development of lives based on assumed cycle definition
 - Availability of high fidelity usage monitoring systems
 - Australian usage has been shown at times up to 50% more severe than OEM design assumptions

Case Study 3 – Safety – Mission Analysis

Case Study 3 – Safety – Mission Analysis

- Review OEM assumed mission profile with accurate UM data
- Review identified usage more severe than original assumptions
- Life reduction imposed
- So what?
 - Credible first-order effects of failure:
 - Uncommanded engine shutdown
 - Non-containment of high energy debris, fire
 - Severe vibrations
 - Invalidation of Type Certification Basis

Conclusion

- HUMS
 - Sometimes an afterthought
 - Minimal certification requirements
 - Very important tool to maintain availability & safety
 - Extremely useful to the ADF due to varying mission profiles

When all elements of HUMS work as one, significant improvements in availability, cost of ownership & safety can be made

QUESTIONS

between the second seco

UNCLASSIFIED