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Abstract 

In this work, an approach to merging machine learning models into an ensemble is presented 
for helicopter load estimation. Several machine learning techniques were explored, including 
Random Forest, long-short term memory recurrent networks, multivariate adaptive regression 
splines, and 1-D convolutional neural networks. Considerable variation in the model results was 
evident when changing the random seed and hyperparameter configuration. Individual models 
were evaluated using key metrics and ranked, using rank sum and rank product, to obtain a 
subset of high performing models. An ensemble was constructed enabling a number of machine 
learning models to be leveraged in the load estimation. Two ensemble methods were attempted, 
a simple average and a weighted average based on rank sum and rank product. The resulting 
output is more robust, more highly correlated, and achieves similar or lower error values as 
compared to the top individual models. While individual model outputs can vary significantly, 
the effects can be mitigated using a thoughtful approach to evaluating models and creating 
subsets and ensembles of models. 
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Introduction 

The popularity of machine learning and artificial intelligence solutions has dramatically 
increased in all applications, including in the domain of Health and Usage Monitoring Systems 
(HUMS). Machine learning approaches have been tested in many HUMS applications, such as 
regime recognition and load estimation. While there is tremendous potential for machine 
learning methods to be accurate and useful for these applications, the limitations of these 
methods are not always clearly expressed nor well understood. Furthermore there is a growing 
number of machine learning models and their countless variations that could be implemented 
in each application. The authors have been investigating the use of a variety of machine learning 
models for estimating helicopter loads based on existing aircraft sensor data [1]. The estimates 
of load and fatigue life have shown tremendous potential for accurate and consistent estimates 
for several helicopter platforms. Efforts have now shifted to examining approaches which 
leverage a wide range of machine learning models through the construction of appropriate 
ensemble models.  

In this work, an approach to merging machine learning models into an ensemble is presented in 
the context of helicopter load estimation. Several machine learning techniques with varying 
hyper parameters and random seeds are explored. These techniques include Random Forest, 
long-short term memory recurrent networks, multivariate adaptive regression splines, and 1-
dimensional convolutional neural networks. Rank sum and rank product approaches to selecting 
suitable subsets of models are outlined as well as two initial options for creating an ensemble 
from these subsets.   
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Machine learning methods 

For regression problems, such as load estimation, there are a large number of machine learning 
methods that can be used. These methods range from linear and polynomial regression, to 
artificial neural networks, to regression trees and random forests, and so on. Without a doubt, 
there are other applicable approaches and algorithms that could be considered, and in the future 
there will certainly be additional ones that are conceived and developed. For each of these 
algorithms or model types, there are a number of hyperparameters or architecture settings that 
can be selected. In addition, there are other initialization values that are specified, such as the 
initial random seed, which are unique to the model that is created at that time. 

In this work, we used a variety of machine learning models to estimate main rotor yoke loads 
from 28 flight state and control system input parameters, described further in Ref. 1. In 
particular, multivariate adaptive regression splines (MARS) [2], random forest (RF) [3], long-
short term memory (LSTM) recurrent networks [4], and 1-dimensional convolutional neural 
networks (1D-CNN) [5, 6] were implemented for load signal estimation. To evaluate the 
accuracy of the load signal predictions, root mean squared error (RMSE) and the correlation 
coefficient between the observed target signal and the predicted signal were calculated. Other 
additional metrics could be and have been used in evaluating the performance of each method, 
however, in this work we selected these two metrics to focus on. Certainly, the selection of 
appropriate metrics is a key consideration in driving the performance of the models and is an 
area that the authors intend to continue to investigate further in future work. 

For each model type, multiple models were built with differing hyperparameters. Within each 
individual model, different random seeds were also tested to glean insight into their impact on 
the variability and stability of the model results. Table 1 lists the four model types and the 
hyperparameter settings that were explored. The total number of individual models that were 
generated added up to 108 models, and over 600 unique models once different random seeds 
are considered. We then looked at how we could visualize and evaluate all of these models to 
appropriately choose the best models to use for load estimation. 

Table 1: Hyperparameter configurations for load estimation model types 

Model No. of 
random seeds 

No. of 
configurations 

Hyperparameter Values 

MARS 5 12 Max terms [10, 20, 30] 
Max degree [1, 2, 3, 4] 

Random 
forest 6 10 Number of trees [10, 20, 40, 60, 80, 100, 

150, 200, 300, 400] 

LSTM 6 72 

Number of nodes [5, 10, 15, 20, 25, 30] 
Number of layers [15, 20, 25, 30, 35, 40] 
Activation function [LeakyReLU, relu] 
Optimizer Adam 
Loss function Mean-squared error 

1D-CNN 6 14 

Number of nodes [5, 10, 15, 20, 25, 30, 
35] 

Number of layers 1 
Activation function [LeakyReLU, relu] 
Optimizer Adam 
Loss function Mean-squared error 
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Subsets of models 

It is clear that there are many models that can be developed for a particular problem. While it 
may be logical that a single model with its unique set of settings trained on data to estimate 
loads in one particular location may not be the best model to estimate loads in other locations, 
it is not clear if we should expect the same type of model to be the only model to use for 
estimation but customized for the different loads to estimate. It is commonly seen in other 
HUMS-related research that a single machine learning model type is selected and that is the 
only model considered for solving the problem. We were interested in keeping a wide variety 
of model types in our portfolio, especially given that there might be newer models developed 
in future that would be worth exploring. One way to address this issue is to retain a number of 
high performing models in an ensemble and leverage all of these individual models. While all 
108 individual models could be included in an ensemble, an effort to trim that total to a smaller 
subset of high performing models was made through investigating rank sum and rank product. 

Individual model results 
The next step in this task was to use the evaluation metrics to determine which models to retain 
for ensemble building. As a visualization tool, 2D boxplots were created to simultaneously 
examine both metrics and highlight their differences for the various models, configurations and 
random seeds. Figure 1 shows the 2D boxplot corresponding to 5 of the 14 configurations of 
the 1D-CNN. Each colour corresponds to a different configuration or option, meaning a 
different hyperparameter grouping, encompassing the results from all the random seeds for that 
option. The thicker lines in the boxes identify the median for both metrics across the various 
random seeds, the shaded area shows the interquartile range (IQR) indicating 25th to 75th 
percentile results, the whiskers extending from each box correspond to 1.5 times IQR, and 
outliers not captured within the whiskers are plotted as outlined circles. 

Figure 1: 2D boxplot of five 1D-CNN models showing RMSE and correlation 

From the 2D boxplots, the differences in the models can be seen, in particular the wide range 
of results for different hyperparameter settings of the same model type, as illustrated by the 
location of the different coloured boxes. Some of the models have quite long whiskers and large 
IQR areas, meaning they have less stability in response to variation of the random seed. While 
machine learning methods are non-deterministic methods that rely on some degree of 
randomness, achieving a certain level of consistency and reproducibility of results is important 
in a load estimation application. Therefore models with a smaller IQR were sought in order to 
have consistent and robust model predictions. 
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The more accurate and reliable models are those that have high correlation, low RMSE, and 
small IQRs in both metrics. The top models would ideally be located in the top left corner of 
the plot. In order to simultaneously consider all of these requirements, two ranking methods, 
rank sum and rank product, were considered for comparing ranking in the various criteria. The 
models were ranked on their performance in four areas: RMSE IQR, correlation IQR, RMSE 
median and correlation median. For both IQR rankings and the RMSE median, the model would 
be ranked higher if the value was smaller. The opposite is true for the correlation median, as it 
is considered to rank higher at higher values. In this work, all four of the rankings, RMSE IQR, 
correlation IQR, RMSE median and correlation median, are important for a successful model.  

Rank Sum and Rank Product 
Rank sum is a form of additive scoring, as it sums the score of the multiple different rankings 
considered. Rank product is a form of multiplicative scoring [7]. Rank sum can be calculated 
using Eqn 1, while rank sum is expressed in Eqn 2:  

𝑅𝑅𝑅𝑅(𝑜𝑜𝑜𝑜) =  ∑ 𝑟𝑟𝑜𝑜𝑜𝑜,𝑖𝑖
𝑘𝑘
𝑖𝑖=1   (1) 

𝑅𝑅𝑅𝑅(𝑜𝑜𝑜𝑜) = (∏ 𝑟𝑟𝑜𝑜𝑜𝑜,𝑖𝑖
𝑘𝑘
𝑖𝑖=1 )1/𝑘𝑘 (2) 

where op is the specific option/configuration, k is the number of rankings being considered (k 
= 4 in this work), and r indicates each of the different rankings for that specific option.  

From the 108 individual models developed, Table 2 shows the top 30 individual models in order 
according to overall rank sum along with rankings in the four categories: RMSE IQR, 
correlation IQR, RMSE median and correlation median. The rank product for these models are 
also provided. It is evident that between model 26 and 27, indicated by the thick line, there is a 
noticeable increase in the value of the rank sum and rank product, indicating a possible natural 
cut-off point for models to include. Certainly other cut-off points could be considered. 
Therefore in both cases, rank sum and rank product, 26 individual models were selected for a 
subset of top performing models, which provides some diversity in the individual models 
making up the ensemble in terms of configuration and algorithm.  

From the results in Table 2, the rank sum and rank product scores seemed to favour essentially 
the same models with minor differences in ordering. The first 26 models contain the same 
models for rank product and rank sum, but not quite in the same order. It is evident that models 
with small IQR were prioritized, as designed, often above RMSE and correlation median values. 
While low variation is important, having all of the top models selected based on IQR metrics 
and not the medians does not seem ideal. The 1D-CNN models performed extremely well with 
high correlation, low RMSE, and low IQRs, and therefore scored well with both rank sum and 
rank product. All but one of the 1D-CNN configurations scored in the top 26. The MARS and 
RF models had higher RMSE and lower correlation, but their IQR were smaller, allowing them 
to score well through this method. None of the LSTM models that were attempted performed 
well enough to appear in this list, tending to have higher RMSE and lower correlation values, 
so perhaps, a broader exploration of its hyperparameter values might be necessary. 

There are some limitations with the ranking approach, in that very small differences in RMSE 
or correlation values could lead to very different rankings if many models achieve similar 
performance. Likewise, if there are significant differences in RMSE and correlation but not 
many models in that range, the ranking could be deceptively similar. In this work, if multiple 
models achieved the identical values in any of the metrics, they were given the same ranking 
with the next model assigned the next ordinal ranking, known as dense ranking. Other strategies 
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to resolve tied rankings were briefly explored, such as competition ranking to leave a gap in 
ranking numbers, but that approach resulted in excessive prioritization of small IQR values. 
The equal weighting of the four categories was perhaps not ideal, so in future we would consider 
modifying the weighting of the categories or perhaps a multi-step process could be 
implemented. It would be prudent in this step to consider other metrics as well. Despite the 
limitations, the top individual models with the lowest RMSE and highest correlation were 
properly identified through this process. 

Table 2: Rank sum and rank product for top 30 models 

Model 
RMSE Correlation Rank 

sum 

Rank 
Pro-
d-uct 

median IQR median IQR 
value rank value rank value rank value rank 

4_MARS 2078 14 0 1 0.865 14 0.000 1 30 3.74 
10_1D-CNN 2010 2 14 14 0.875 1 0.002 16 33 4.60 
5_1D-CNN 2007 1 36 17 0.873 3 0.002 15 36 5.26 
0_MARS 2217 19 0 2 0.853 17 0.000 2 40 6.00 
8_MARS 2244 20 0 3 0.845 21 0.000 3 47 7.84 

8_1D-CNN 2036 8 43 21 0.872 8 0.001 14 51 11.71 
6_1D-CNN 2028 5 40 20 0.872 9 0.005 18 52 11.28 
3_1D-CNN 2018 3 61 24 0.873 6 0.005 19 52 9.52 
4_1D-CNN 2030 6 63 25 0.873 5 0.004 17 53 10.63 
12_1D-CNN 2054 11 33 16 0.873 4 0.005 22 53 11.16 
1_1D-CNN 2026 4 40 19 0.873 7 0.006 23 53 10.52 

9_RF 2258 23 0 4 0.843 24 0.000 4 55 9.69 
8_RF 2258 22 0 9 0.843 22 0.000 10 63 14.45 

2_1D-CNN 2039 9 95 32 0.874 2 0.005 20 63 10.36 
6_RF 2261 25 0 8 0.842 25 0.000 6 64 13.16 

11_1D-CNN 2035 7 53 22 0.870 11 0.008 26 66 14.49 
3_RF 2270 28 0 5 0.841 29 0.000 5 67 11.94 
5_RF 2268 27 0 7 0.841 27 0.000 9 70 14.64 
7_RF 2259 24 0 13 0.843 23 0.000 13 73 17.48 
0_RF 2285 31 0 6 0.839 31 0.000 7 75 14.17 
4_RF 2265 26 0 12 0.842 26 0.000 12 76 17.66 

13_1D-CNN 2051 10 81 30 0.869 12 0.008 25 77 17.32 
1_RF 2278 30 0 10 0.840 30 0.000 8 78 16.38 

7_1D-CNN 2074 13 68 28 0.866 13 0.007 24 78 18.36 
2_RF 2270 29 0 11 0.841 28 0.000 11 79 17.70 

9_1D-CNN 2055 12 104 33 0.871 10 0.013 28 83 18.25 
1_MARS 2249 21 63 26 0.847 20 0.016 29 96 23.72 
9_MARS 2294 32 18 15 0.837 32 0.005 21 100 23.83 
5_MARS 2092 15 220 55 0.863 15 0.031 41 126 26.69 
3_MARS 2078 14 233 60 0.849 18 0.023 34 129 28.11 

Ensembles 

Ensembles were constructed enabling a subset of models to be leveraged in the load estimation. 
There are several ways to construct an ensemble, including using other machine learning 
methods to combine results. In this paper, however, we initially explored two straightforward 
methods: a simple average and weighted average based on the rank sum and rank product. 
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Simple Average 
For a simple average ensemble, the predictions of all the top models are averaged for each 
datapoint in the test set. The RMSE and correlation are then calculated based on the new 
ensemble prediction values. For the ensemble, we used the individual model from the particular 
configuration with the random seed that yielded the lowest RMSE and highest correlation, as 
opposed to using the full set of 5 or 6 individual models with different random seeds. Since the 
rank sum and rank product subsets chose the same set of 26 models to include, the simple 
average ensemble is the same. Table 3 shows the RMSE and correlation results for the simple 
average ensemble and the weighted average ensembles. Figure 2 illustrates the load signal 
predictions for several individual models and the resulting simple average ensemble. The 
1,395,616 data points cover 39 test flights merged together totaling just under 24 flight hours. 

Table 3: Ensemble model results for RMSE and correlation 

Ensemble Model RMSE Correlation 
Simple average 1968 0.879 

Weighted average – rank sum 1948 0.881 
Weighted average – rank product 1942 0.882 

Weighted Average 
A variation on the simple average ensemble is to use a weighted average. In this work, we 
follow on with the rank sum and rank product rankings to determine the weightings of each 
model in the ensemble. The weightings for the rank sum ensemble used Eqn 3, while the rank 
product ensemble weightings followed Eqn 4. 

𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
∑

𝑦𝑦𝑜𝑜𝑜𝑜
𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜

𝑛𝑛
1

∑ 1
𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜

𝑛𝑛
1

(3) 

𝑦𝑦𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
∑

𝑦𝑦𝑜𝑜𝑜𝑜
𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜

𝑛𝑛
1

∑ 1
𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜

𝑛𝑛
1

(4) 

where yensemble is the load signal prediction, yop is the load signal prediction from the individual 
model, RPop is the rank product for that individual model, RSop is the rank sum for that individual 
model, and n is the number of individual models in the subset. 

The weighted average results for rank sum and rank product are included in Table 3 and Figure 
2. A number of observations were made based on these results. Given that the individual models 
had a range of RMSE values from 1959 to 2284 and a correlation coefficient range from 0.839 
to 0.880, the ensembles performed very well. Of the three ensembles, the simple average 
ensemble resulted in a slightly higher RMSE (1968) than the top individual model, but lower 
than the other 25 individual models, and a correlation coefficient just below the best model. The 
rank sum and rank product ensemble both resulted in lower RMSE values and higher correlation 
values than the best individual model. Overall, the rank product ensemble achieved the best 
performance based on RMSE and correlation metrics.

From Figure 2 though, which plots the best individual models and the three ensemble 
predictions, it is evident that the models fall short with respect to the target observed signal, but 
they seem to be in phase and the gaps are also followed. These latter features show that the 
models are capturing relevant information, but improvements in the amplitude estimation of the 
load signal are still required. Although correlation and RMSE values between the ensembles 
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and top individual models are similar, the top 1D-CNN model prediction seems to visually 
follow the observed signal more closely. The lower peaks are generally quite well estimated by 
all models, but the upper peak loads are underestimated. Because the predictions are averaged, 
the load signal often is smoother. However if all individual models tend to underpredict peak 
values, the ensemble will similarly underpredict these peaks. In load estimation problems, 
underprediction of peak values is often a challenge since the number of peak values that appear 
in training are far outnumbered by off-peak data points. It is worth noting that the set of sensors 
from which the models receive the input were placed on the aircraft for other purposes, and the 
attempts to obtain accurate predictions from these sensors requires extracting as much of the 
relevant information as possible using the machine learning models. 

Figure 2: Load signal predictions for several individual models and the three ensembles 

Likely the initial decision to include 26 top models could be revised to include fewer models 
and therefore remove some models that detract from the load signal prediction. With the results 
and the example provided in this work, it is evident that the most appropriate evaluation of the 
models may not be fully encapsulated in the RMSE and correlation metrics. If the focus of load 
estimation is cycle counting for damage estimation and load exceedance tracking, the 
synchronicity of the model with the target signal may not be as important as accurately capturing 
the peaks and valleys of the signal. In previous work, this observation led to consideration of 
other metrics related to the load exceedance curve in addition to RMSE and correlation of the 
load signal. Therefore in future, we plan to continue to explore other metrics that may lead to 
better overall models and therefore better ensembles in the end. 

Concluding Remarks 

An approach to merging models from various machine learning techniques, including Random 
Forest, long-short term memory recurrent networks, multivariate adaptive regression splines, 
and 1-dimensional convolutional neural networks, into an ensemble is outlined in this paper in 
the context of helicopter load estimation. The resulting 108 individual models covering a range 
of hyperparameter configurations were evaluated primarily by their root mean squared error 
and correlation with the target signal. Considerable variation in the model results was evident 
when changing the random seed and hyperparameter configuration.  
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These 108 individual models were then evaluated to determine their stability across random 
seeds, comparing median values and interquartile ranges from boxplots of their RMSE and 
correlation. Using rank product and rank sum, the individual models were ranked to down select 
a subset of 26 high performing load estimation models. An ensemble of the subset of models 
was then constructed enabling a number of machine learning models to be leveraged in the load 
estimation. A simple average ensemble and weighted average ensemble related to the rank sum 
and rank product results were trialled. There were some notable benefits to using an ensemble 
of individual models, in particular introducing some diversity in the individual models making 
up the ensemble in terms of configuration and algorithm, and a smoother load signal prediction 
with higher correlation. Our results found that in this application, all three ensemble methods 
obtained low RMSE and high correlation. There were several individual 1D-CNN models that 
performed very well. The output of the ensembles performed similar to, if not better than these 
models, and overall should provide a more robust and consistent load estimate.  

While individual model outputs can vary significantly, the effects can be mitigated using a 
thoughtful approach to evaluating models and creating subsets and ensembles of models. It is 
evident that more effort in the future is required to obtain better individual models, however the 
results of this initial work aimed at developing an approach for managing, selecting and 
leveraging a large number of machine learning models are promising. Future work is anticipated 
in the following areas in order to further improve the load estimates: 

- inclusion of other machine learning model types for load signal estimation,
- further exploration of hyperparameter values for each model type,
- further refinement of subset selection and the criteria for subset selection, and
- further consideration of other ensemble methods, including dynamic approaches.
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