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Abstract 

The recent drives to increase efficiency in vehicle systems has led to an increased interest in 

developing vehicle health management systems. The use of artificial intelligence and machine 

learning algorithms would be vital for these applications to identify trends in vehicle 

performance and make inferences of the current and future state of health of safety-critical 

subsystems.  This paper presents a study done using the outputs from diagnostic and prognostic 

models based on data gathered by Health and Usage Monitoring System sensors on-board 

Armoured Personnel Carriers. Based on the requirements and the data being processed for 

insights, the outputs from these models are subject to different reasoning techniques, inference 

tools and algorithms. This includes a sensor signal validation and anomaly detection tool in 

which a trained probabilistic neural network is used to identify off-nominal behaviour in sensor 

data, thus aiding in the health assessments and integrity checks of sensors. Additionally, Kalman 

filtering is employed to utilize the dynamic equations that govern the operation of the 

powertrain. An Extended Kalman Filter (EKF) algorithm is developed to determine instances 

where there are large discrepancies between the measured and estimated value, indicating a 

possible fault.  

Keywords: Sensor Networks, Health and Usage Monitoring Systems (HUMS), Vehicle Health 

Management, Artificial Intelligence   

Introduction 

The concept of Health And Usage Monitoring Systems (HUMS) was initially introduced by the 

National Aeronautics Space Administration (NASA) in 1992, as a technology to collect data, 

diagnose, predict and mitigate faults, and support the operational decisions and post-operational 

maintenance activities of space vehicles [1]. Current HUMS technologies encompass many 

vehicle industries such as aircraft, ships and automobiles, particularly in the defence sector [2, 

3]. These systems help reduce the cost of maintenance, repair and overhaul (MRO) of individual 

and fleet assets. However, further development of this technology in the future would be 

essential for the application of safe and reliable autonomous vehicles as they would require the 

capacity to predict system faults prior to a catastrophic event. 

Typically, HUMS comprises a suite of sensors which capture and store large amounts of status 

data at vehicle, system and component levels [4]. This provides an opportunity to leverage the 

data to develop intelligent vehicle health management systems with the intention of increasing 

the levels of efficiency and effectiveness of individual assets and vehicle fleets, which can 

translate into tangible mission, maintenance and support benefits. The overall benefits expected 

from an opportune exploitation of this technology are improved availability, safety and 

reliability of vehicles and components as well as the minimization of operational, maintenance 

and life-cycle costs also in relation to a reduction in the redundancy levels [5, 6]. 

In this study, several AI based diagnostic and prognostic tools were developed to analyse data 

gathered by HUMS sensors onboard an Armoured Personnel Carrier (APC). The 

implementation of these techniques in vehicle health management systems to make fault 
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predictions has a strong potential to enhance safety, reliability and efficiency across many 

different applications, particularly in the field of autonomous vehicle applications.  

State-Of-Health Analysis Using HUMS 

Figure 1 provides a basic overview of the state-of-health monitoring and management process 

using HUMS data. The data is gathered from a number of sensors across the vehicle. These 

sensors range from conventional embedded sensors to more advanced smart and wireless 

sensors.  

The data utilized for this study was taken from a fleet of 149 APCs fitted with standard HUMS 

equipment, including over 50 data channels from on-board sensors linked via a Controller Area 

Network (CAN bus) in each APC as shown in Figure 2. A selection of these sensor variables 

that were used in this study are presented in Table 1. A vehicle data logger is used to capture 

and store data throughout all mission profiles carried out by each APC. These profiles include 

both periods of vehicle activity and idle periods during normal operation. At the end of each 

session, the gathered raw vehicle data is transferred via WiFi or 3/4G automatically to a data 

storage facility, processed and can then be used for analysis. 
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Figure 1: HUMS data workflow diagram 

Raw measurement data collected from all sensors is filtered, fused and analysed. Data rejection 

and filtration is required in this step to remove outliers and noise, to get a realistic picture of 

normal behaviour. Instead of feeding sensor data directly into machine learning models, it is 

necessary to extract features from the sensor data. These features capture higher-level 

information in the sensor data, for example, moving averages or frequency content.  

In the next step, the parameters acting as condition indicators for faults are identified and 

monitored to detect, identify and characterise faults by studying anomalies and trends. 

Diagnostic processes allow the rapid determination of specific components/systems that need 

to be replaced during maintenance and can also contribute to a better understanding on the 

factors causing any premature failure. Prognostic processes, on the other hand, enable the 

prediction of the residual life of components/systems and the most likely failure mode by 

analysing trends in historical observations and implementing model-based estimations [7].  
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Figure 2: APC fitted with HUMS Sensor Suite 

Table 1: List of sensor variables 

Sensor Units Additional Notes 

Throttle Position % Ratio of actual position of accelerator pedal to maximum position 

Driver Demand Engine Torque % 
Instantaneous engine torque demanded by driver. Calculated by Engine 
Control Unit (ECU) 

Actual Percent Engine Torque % Output torque of engine calculated by ECU 

Engine RPM rev/m Operating speed of engine calculated by ECU 

GPS Altitude m Height above sea level 

GPS Latitude degrees Latitude co-ordinate of vehicle 

GPS Longitude degrees Longitudinal co-ordinate of vehicle 

GPS Speed km/hr Derived from GPS data 

GPS Time N/A Measured by GPS 

Ambient Air Temperature °C - 

Engine Oil Viscosity cP Measured by an oil condition sensor. 

Engine Oil Temperature °C Measured by engine ECU and data relayed to the VCU. 

Engine Oil Pressure kPa 
Sensor provides signal source variations proportional to engine oil 
pressure (gauge pressure) 

Total Engine Hours (ECU + HUMS) hrs 
Incremented when the condition (Engine RPM>=200 for 0.1 sec) is 
satisfied 

AI-Based Diagnostic and Prognostic Tools 

Sensor Data Pre-processing and Anomaly Detection Using a Probabilistic Neural Network 

One of the most significant areas to consider when implementing an Integrated Vehicle Health 

Management (IVHM) system is to ensure the reliability of all measured parameters. The 

diagnostic and prognostic algorithms must be able to distinguish between anomalies that occur 

with the systems and those that occur due to the result of normal transients or faulty sensors. In 

particular, a prime cause of erroneous sensor data is damaged or defective sensor cable 

connectors. Therefore, a comprehensive signal validation and anomaly detection module is 

needed to act as a front-end to validate and call out health status anomalies from the sensed 

signals prior to further analysis [17]. 

One of the AI techniques that can be applied to address this issue is based on a probabilistic 

neural network (PNN) modelling technique that can use normal system operating data to detect 
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off-nominal behaviour. The PNN is trained to predict a signal, with inputs that are correlated to 

it in some manner over an appropriate dynamic range.  

As an example, the variation of engine oil viscosity with temperature was examined. Figure 3a 

shows the variation of these two parameters for a given operating session. It is evident from the 

graph that there is a clear relationship between engine oil viscosity and engine oil temperature. 

This relationship can be modelled by various equations including Ubbelohde-Walther equation, 

Vogel-Cameron equation and the Wright model [18]. This is the basis for the estimate of KV100 

(Kinematic Viscosity at 100°C) which is required as an indicator of engine oil degradation. 

However, there are many anomalous points which need to be discarded from the sensor data, 

including some readings with a temperature of 273K (0°C) which likely correspond to instances 

where the sensor is still adjusting to the environment. A PNN model was constructed and trained 

to recognize data points that correspond to expected values along the viscosity-temperature 

curve, to the readings of 0°C and to other anomalies. The results of the model are plotted in 

Figure 3b. 

a) b)

Figure 3: Engine Oil Viscosity vs Engine Oil Temperature a) before PNN data classification 

b) after PNN data classification

In this case, there is value in distinguishing between the type of anomalies that occur along with 

their associated frequency of occurrence and magnitude. An increase in 0°C readings could 

mean that the sensor is taking too long to calibrate to its environment, whereas an increase in 

the number and/or magnitude of other anomalies could mean that the signal from the sensor is 

corrupted in some way. The health assessment based on this information can be performed by 

a decision level fusion output that determines whether a particular sensor or health feature has 

anomalies or is damaged and therefore unreliable. 

Powertrain Fault Detection Using an Extended Kalman Filter 

The information that can be inferred from the HUMS data regarding the motion of the vehicle 

and the forces and moments acting on it can be leveraged in a model-based reasoning approach 

to detect faults in the powertrain. In this study, this was constructed in the form of an Extended 

Kalman Filter (EKF). 

The first step involved defining the dynamics equation that describes the function of the 

physical model. For this we consider the relationship between the torque at the wheel (𝑇𝑤) and 

the angular acceleration of the wheel (�̇�) given by: 

�̇� =
(𝑇𝑤 − 𝑐𝜔)

𝐽𝑤
(1)



PEER REVIEW 

12th DST International Conference on Health and Usage Monitoring,  

29 November 2021-1 December 2021, Melbourne 

where 𝐽𝑤 , 𝜔 and 𝑐 are the inertia, angular velocity and damping coefficient of the wheel 

respectively.  

𝑇𝑤 can be derived from the measured engine output torque 𝑇𝐸𝑁𝐺 from the HUMS data using the 

following equation, which represents the behaviour of the drivetrain. 

𝑇𝐸𝑁𝐺 =
𝑇𝑊

𝑖𝑔𝑖𝑓𝜂𝑡
(2) 

where 𝑖𝑔 is the gearbox ratio, 𝑖𝑓 is the final drive ratio and 𝜂𝑡 is the transmission efficiency. To 

estimate the damping coefficient, we introduce an auxiliary state for the damping coefficient 

and set its derivative to zero. 

�̇� = 0 (3) 

The state vector 𝑥 and the prediction step to calculate the next state vector is given by: 

𝑥 = [
𝜔
𝑐
] (4) 

On the other hand, the measurement step uses the inputs of 𝜔 and �̇� taken from the sensor 

data. This step is defined by the following equation: 

𝑦 = [
𝜔

(𝑇𝑤 − 𝑐𝜔) 𝐽𝑤⁄ ] = [
𝜔
�̇�
] (4)

Physical systems are usually represented as continuous-time models while discrete-time 

measurements are required to be taken for state estimation via the EKF algorithm. The discrete 

time model equations for the system as well as the model are given by the following equations 

respectively: 

𝑥𝑛+1 = [
𝜔𝑛+1

𝑐𝑛+1
] = [

𝜔𝑛 + �̇�𝛥𝑇
𝑐𝑛 + �̇�𝛥𝑇

] 

= [
𝜔𝑛 + (𝑇𝑤𝑛 − 𝑐𝑛𝜔𝑛)𝛥𝑇 𝐽𝑤⁄

𝑐𝑛
]

(5) 

𝑦𝑛 = [
𝜔𝑛

�̇�𝑛
] (6)

The next step is to define the state (process) noise disturbances 𝑞 and the measurement noise 

disturbances 𝑟. These noise terms are additive and modify the discrete time model equations: 

𝑥𝑛+1 = [
𝜔𝑛 + (𝑇𝑤𝑛 − 𝑐𝑛𝜔𝑛)𝛥𝑇 𝐽𝑤⁄

𝑐𝑛
] + 𝑞 (7) 

𝑦𝑛 = [
𝜔𝑛

�̇�𝑛
] + 𝑟 (8) 

The process and measurement noise have zero mean and covariances 𝑄 and 𝑅. In the EKF 

implementation, the friction state has a high process noise disturbance which reflects the fact 

that the friction coefficient is expected to vary during normal operation. The aim is to track this 

variation. The covariance of the measurement noise was calculated based on the accuracy of 

the readings of the angular velocity which are derived from the vehicle speed, which in turn is 

derived from GPS measurements.  

The function 𝑓 can be used to compute the predicted state from the previous estimate and 

similarly the function ℎ can be used to compute the predicted measurement from the predicted 

state. However, 𝑓 and ℎ cannot be applied to the covariance directly. Instead, a matrix of partial 

derivatives (the Jacobian) is computed. The Jacobian of the state function and the measurement 

function are evaluated at each time step and are defined by defined by the following equations: 

𝜕𝑓

𝜕𝑥
= [

1 − 𝛥𝑇𝑐𝑛 𝐽𝑤⁄ 𝛥𝑇𝜔𝑛 𝐽𝑤⁄

0 1
] (9) 

𝜕ℎ

𝜕𝑥
= [

1 0
− 𝑐𝑛 𝐽𝑤⁄ −𝜔𝑛 𝐽𝑤⁄ ] (10)
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The EKF algorithm requires an initial state vector 𝑥0 as a starting point from which the filter 

eventually converges to the solution. 

The idea behind setting up a model this way is to monitor certain parameters during the 

operating session of the vehicle. Any instance where the estimated value of the monitored 

variables greatly differs from its measured value could be indicative of faulty behaviour. The 

EKF algorithm enable the estimation of the states, and in this scenario, we are particularly 

interested in the damping coefficient state of the wheel. Figure 4a shows a sample of data input 

to the EKF algorithm, whereas Figure 4b shows the output. 

Figure 4: a) Wheel measurements for a given APC b) EKF state estimation 

The estimated friction state is shown with confidence intervals corresponding to 3 standard 

deviations. The calculated friction is that obtained from the system dynamic model. It can be 

observed that the friction coefficient varies significantly throughout the regular operation of the 

vehicle. The underlying hypothesis of this methodology is that a large discrepancy between the 

friction coefficient calculated by the dynamics model and that obtained from the EKF 

estimation implies the possibility of a fault in the drivetrain.  As seen in Figure 4b, there are 

several occasions where the calculated friction goes beyond the 3-sigma confidence interval of 

the estimation friction, and this corresponds to the instances with a large error in the estimated 

angular velocity. In physical terms, this means that there is a mismatch between the theoretical 

torque being delivered from the engine to the wheel via the drivetrain and the angular velocity 

with which the wheel is spinning.  

Conclusions 

This study establishes AI based diagnostic and prognostic tools that utilize HUMS data to 
provide outputs that can be used to infer the state of health of subsystems of an APC. These 
tools included a PNN algorithm that can be used to classify sensor data inputs and thereby aid 
in sensor signal integrity checks. This functionality would particularly be useful when 
implemented in real-time in autonomous vehicle applications, where operational decisions are 
made solely based on information gathered by sensors. Another tool that was developed used 
an EKF algorithm for fault detection of the powertrain which involved monitoring the friction 
coefficient at the wheel to determine instances where there are large discrepancies between the 
measured and estimated value. The implementation of these techniques in vehicle health 
management systems to make fault predictions has a strong potential to enhance safety, 
reliability and efficiency across many different industries.  
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