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Abstract 
 
Understanding the behavior of vibration-based condition indicators for health monitoring of 
helicopters can be difficult. The high complexity of mechanical assemblies, combined with a 
high range of possible operating parameters constitute a challenging environment for vibration 
analysis. Therefore, a data-driven approach based on statistical modeling is proposed in this 
work to define vibration-based operating regimes. Specifically, parametric clustering based on 
a Gamma mixture model is considered to associate vibration-based health indicators to 
helicopter operating regimes through Naïve Bayes classification. An entropic criterion is 
considered for clustering optimization: namely, the Validity-measure (V-measure). 
 
Keywords: condition indicators, operating regimes, Gamma mixture model, clustering, 
classification, Validity-measure criterion, vibration monitoring, HUMS. 
 
 

Introduction 
 

Context and problem formulation 
 
Health monitoring of complex mechanical systems such as helicopter gearboxes is a 
challenging topic. Indeed, operating parameters have an influence on vibration signature and 
thus health indicators. Understanding vibration behavior relation to operating regimes is 
essential to designing an efficient damage detection system, minimizing false alarms due to the 
effect of specific flight conditions [1]. A probabilistic method to associate health indicator 
statistics with operating regimes is proposed. Other studies dealing with the influence of 
operating regimes on vibration patterns can be found in [2] [3] [4] [5]. Vibration signatures of 
helicopter dynamic components can be qualified as cyclostationary signals [6]. In this 
framework, the amplitude estimate of harmonic components of first order cyclostationary 
signals 𝑥 follows a chi-square distribution, which can be generalized as a Gamma distribution 
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function tuned with two parameters 𝛼, 𝛽 for one data value 𝑥 as defined in Eqn 1. Detailed 
explanations can be found in [7].  
 

𝑝(𝑥|𝛼, 𝛽) =  
1

𝛽ఈΓ(𝛼)
𝑥ఈିଵ𝑒

ି
௫
ఉ ; 𝑥 ∈ ℝା ; 𝛼 ∈ ℝା∗ ;  𝛽 ∈ ℝା∗ , (1) 

 
where Γ(. ) is the Gamma function. 
In HUMS terminology, the amplitude of these harmonics component belong to a set of scalars 
called health indicators which are used to monitor specific phenomena: gear wear, shaft 
unbalance, shaft misalignment, etc. To ensure fault capability detection, frequent signal 
acquisitions are needed. Health indicators (HI) are then sampled with a periodicity which results 
from a trade-off between HUMS processing and storing capabilities and the need to keep 
sufficiently frequent acquisitions for timely fault detection. HI can be seen as a stochastic 
process with hidden statistical states related to specific operating regimes. The overall data in 
this paper is described by two vectors containing HI values acquired at each time step 𝑡௡ such 
as 𝑋 = [𝑥ଵ:ே] associated with corresponding operating regimes vector defined as 𝐶௑ = [𝑐ଵ:ே

ଵ:ூ ] 
(Fig. 1).  
 

 

Fig. 1: Example of a Health Indicator 𝑋 = [𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ] as a function of time 𝑡. Colors – operating regimes 
𝐶௑ = [𝑐ଵ

ଵ, 𝑐ଶ
ଶ, 𝑐ଷ

ଶ, 𝑐ସ
ଷ] 

 
Operating regimes definition 
 
Operating regimes used in this work are defined from loads calculation on helicopter according 
to operating parameters 𝜁 = {𝜁ଵ:௣}. Specific ranges (black dots) for each operating parameter 
are defined. Paths through these ranges determine operating regimes. They will be referred to 
as classes 𝐶 = {𝐶ଵ:ூ} in this paper. See an example for three operating regimes definition in Fig. 
2. 
 

 

Fig. 2: Definition of three operating regimes 𝐶ଵ, 𝐶ଶ, 𝐶ଷ as a function of range (black dots) defined on operating 
parameters 𝜁ଵ:௣  

 
 

Methodology 
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The aim of this study is to associate health indicators statistics to helicopter operating regimes. 
This translates into identifying the association between health indicator clusters 𝑆 based on a 
Gamma Mixture model and one or more classes 𝐶 (i.e. operating regimes) as depicted in Fig. 
3. HI statistics are characterized with a mixture model composed of 𝑘 clusters defined as 𝑆 =

 {𝑆ଵ:௄}, as detailed in Sub-section: Health indicator clustering. A maximum a posteriori 
probability is computed with Naïve Bayes Classifier to associate the operating regimes defined 
as classes 𝐶 =  {𝐶ଵ:ூ} to clusters 𝑆 as detailed in Sub-section: Operating regimes classification. 
The number of clusters 𝐾 is inferred using a specific criterion as detailed in Sub-section: Model 
selection.  
 

 

Fig. 3: (a) HI clustering assigning data 𝑥ଵ to 𝑥ସ to clusters 𝑆ଵ, 𝑆ଶ , (b) association of HI clusters 𝑆ଵ, 𝑆ଶ (rows) to 
the operating regimes 𝐶ଵ, 𝐶ଶ, 𝐶ଷ 

 
Health indicator clustering: Gamma mixture model 
 
The hidden HI cluster structure can be obtained through the use of an unsupervised machine 
learning method called mixture model (see Fig. 4). The hidden structure can be characterized 
with 𝐾 clusters {𝑆௄}. The following variables are introduced: a binary latent variable 𝑧௞ with 𝑘 
possible states such that 𝑧௞ ∈ {0,1} with ∑ 𝑧௞

௄
௞ୀଵ = 1, a mixing coefficient 𝜋௞ with 0 ≤  𝜋௞ ≤

1 and ∑ 𝜋௞ ௄
௞ୀଵ = 1. The marginal distribution over 𝑧 can be written as 𝑝(𝑧௞ = 1) = 𝜋௞ thus 

for 𝑘 clusters 𝑝(𝑧) =  ∏ 𝜋௞
௭ೖ

௞  . Consequently, 𝑝(𝑋|𝑧) =  ∏ 𝑝(𝑋|𝛼௞, 𝛽௞)௭ೖ௄
௞  with 𝛼௞, 𝛽௞ the 

parameters of the Gamma distribution for the cluster 𝑘. By marginalization over latent variable 
𝑧, the probability density function of the mixture reads (Eqn 2) 
 

 
𝑝(𝑋) = ∑ 𝑝(𝑋|𝑧௞)𝑝(𝑧௞) = ௄

௞ୀଵ ∑ 𝑝(𝑋|𝛼௞, 𝛽௞)𝜋௞
௄
௞ୀଵ . (2) 

 
Determination of the parameters {𝜋௞, 𝛼௞, 𝛽௞} attached to cluster 𝑆௞ is done with the 
Expectation-Maximization (EM) algorithm once the number of clusters 𝐾 is obtained from the 
model selection criterion. 
 

 

Fig. 4: Graphical representation of a Gamma mixture model (observed data in the shaded circle and small 
squares indicate fixed parameters) with 𝜋௞ mixing coefficient, 𝑧 latent variable attached to data 𝑥, 𝛼௞ and 𝛽௞ 

the parameters of the Gamma distribution in cluster 𝑘. 𝑁is the number of data points and 𝐾 the number of 
clusters. 
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Operating regimes classification: Naïve Bayes Classifier 
 
The most probable cluster associated with an operating regime is estimated using a Naïve Bayes 
Classifier (Eqn 3). Operational regimes are linked to a cluster by computing the maximum a 
posteriori probability of the associated HI values belonging to the cluster 𝑆௞ defined with 
{𝜋௞, 𝛼௞, 𝛽௞} parameters (Eqn 4, Eqn 5), i.e. 
 

 
𝐶௜ ∈ 𝑆௞∗;  ∀𝑐௡

௜ ∈ 𝑆௞∗  ;  𝑘∗ = max
௞

൫𝑝(𝑆௞|𝑥௡)൯,   
(3) 

where 

𝑝(𝑆௞|𝑥௡) =
𝜋௞𝑝(𝑥௡|𝑆௞)

∑ 𝜋௞𝑝(𝑥௡|𝑆௞)௄
௞ୀଵ

, (4) 

and 
 

𝑝(𝑥௡|𝑆௞) = 𝑝(𝑥௡|𝛼௞, 𝛽௞). (5) 
 
In the above equations, 𝑆௞ is the cluster, 𝑐௡

௜  corresponds to the operating regime associated to 
𝑥௡ and 𝐶௜ correspond to the operating regimes. Consequently, the operating regimes 𝐶௜ are 
attributed to clusters 𝑆௞ through the corresponding HI values (see Fig. 5).  
 

 
Fig. 5: Maximum a posteriori clustering with naïve Bayes classifier. The N values 𝑥௡ and the associated I 

operating regimes 𝑐௡
௜   are attributed to the K clusters 𝑆௞ through their a-posteriori probabilities.  

 
Model selection: V-measure (Validity-measure)  
 
Recalling the hypothesis for selecting the number of clusters, the idea is to maximize the 
separation of the clusters based on the operating regimes. Such criterion can be seen as 
equivalent as to minimizing the conditional entropy on clusters given a set of classes and it is 
known as the V-measure [8]. The V-measure (Eqn 6) is based on NMI (Normalized Mutual 
Information) and allows a balance between homogeneity (Eqn 7) or completeness (Eqn 8) 
within each cluster thanks to a penalty coefficient 𝛾.  
 

𝑉ఊ =
(1 + 𝛾)ℎ𝑐

𝛾ℎ + 𝑐
, (6) 

 
where  
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ℎ = 1 −
𝐻(𝐶|𝑆)

𝐻(𝐶)
 ; 0 ≤ ℎ ≤ 1 , (7) 

 
and 

𝑐 = 1 −
𝐻(𝑆|𝐶)

𝐻(𝑆)
 ; 0 ≤ 𝑐 ≤ 1. (8) 

 
If 𝛾 ≪   1 then 𝑉ఊ → ℎ, the optimal value of clusters is to favor homogeneity in other words all 
datapoints in cluster 𝑆௞ have the same class. At the opposite, when 𝛾 ≫  1 then 𝑉ఊ →  𝑐, the  
optimal value of clusters is to favor completeness; in other words, all datapoints of a given class 
have been assigned to the same cluster 𝑆௞.  
In this work, the concern is to favor completeness, thus 𝛾 ≫ 1 in Eqn 6. 
 
 

Results 
 
In this section, the methodology outlined in the section: Methodology is applied on data from 
a helicopter fleet composed of a HI representing the amplitude of a harmonic component which 
is synchronous with the rotor blade frequency and measured in the lateral direction of flight. 
Classes (i.e. operating regimes) are defined by maneuvers through flight parameters, which are 
measured contextually to the HI values, aircraft weight, and center of gravity position. Around 
300 operating regimes 𝐶௜ are identified in this application.  Fig. 6 shows the method applied to 
the HI described above. To maximize the V-criterion, three clusters are selected with arbitrary 
𝛾 =  1𝑒2 ≫  1. Overlap rate is the ratio between the number of classes associated with more 
than one cluster and the total number of classes. The probability density function of the HI is 
given in Fig 6.a. Fig 6.b shows the association of operating regimes (abscissa) with the 
identified data clusters (ordinates). Red dots represent the regimes belonging to multiple 
clusters, and blue dots those operating regimes linked with one and only one cluster. The 
resulting overlap rate is around 26% in this case. Consequently, 74% of operating regimes is 
associated with a specific vibratory state while 26% of operating regimes do not define a clear 
vibratory state or do not impact the statistical states of the HI. However, the high density of 
acquisitions within specific operating regimes limits the information in the rest of the envelope 
(Fig. 7) for the available data. 
 

 

Fig. 6: (a) probability density function of the identified clusters on HI values (clusters: red, green, blue), (b) 
Correspondence between the classification of operating regimes and clustering of HI (blue dots) and overlap 

(red dots) 
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Fig. 7: HI probability density function estimated with a box kernel as a function of classes (i.e. operating 

regimes)  
 
 

Conclusion 
 
In this paper, a clustering-classification method is introduced with the objective of capturing 
the statistical behavior of a health indicator associated with operating regimes. A posteriori 
characterization of health indicator statistics with a data-driven model is still a complex task 
because of high dimensionality problem and operating regimes definition. It was found that 
some operating regimes result in a distinct vibration behavior and are thus linked to one data 
cluster, whereas another part of them does not affect the health indicators statistics and it is 
hence associated to multiple clusters. 
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