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Abstract 

 

An unsupervised Deep Support Vector Data Description model is proposed combining deep 

Convolutional Neural Network with SVDD for helicopter anomaly detection. The method uses 

2D representations from cyclic spectral analysis as inputs, including Cyclic Spectral Correlation 

and Cyclic Spectral Coherence. A helicopter vibration dataset provided by Airbus SAS is used 

to test the proposed method, and the detection results prove its efficiency with high detection 

accuracy. Results from various feature extractors of the Deep SVDD are analyzed. Comparative 

analysis is also carried against reconstruction-based deep learning methods. 

 

Keywords: helicopter anomaly detection, cyclic spectral analysis, deep learning, support vector 

data description, Deep SVDD 

 

Introduction 

 

Improving the reliability of helicopters meanwhile reducing the economic costs remains a 

longstanding challenge for the aviation industry. One aspect that attracts intense study and 

investment is substituting the periodic maintenance operations with Condition-based 

Maintenance (CbM) strategies. In contrary to the preventive examinations, CbM aims to use in-

time monitoring information to schedule the maintenance. Therefore, an automated, efficient, 

and accurate anomaly detection system is of great importance for the CbM of an individual 

helicopter as well as the entire helicopter fleet.     

 

In order to detect the anomalies, modern helicopter health management system leverages 

various sensors to collect in-flight information. These sensory measurements exist in extreme 

amount, complexity, and diversity but contain anomalous data indicating critical incidents on 

components. Classic data-driven anomaly detection methods utilize signal processing methods, 

such as spectrum analysis [1], time-frequency analysis [2], cyclic spectral analysis [3, 4], to 

construct engineer features as health indicators. However, these features always fail to 

accurately discriminate the anomalous in practical applications. 

 

With the development of Artificial Intelligence (AI), nowadays, Machine Learning (ML) and 

Deep Learning (DL) methods have been extensively adopted in data-driven anomaly detection. 

Comparing to classic detection methods, ML and DL models are able to extract more 

discriminative features, which significantly improves the detection accuracy. In the past years, 

several DL tools has been proposed for anomaly detection tasks, such as autoencoder [5], Long 

Short-Term Memory (LSTM) network [6], Generative Adversarial Network (GAN) [7], and 

Variational Autoencoder (VAE) [8]. They provide promising results in rotating machinery 

anomaly detection cases, but the high demand from industry is provoking researchers to pursue 

detection models with higher accuracy.  
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Support Vector Data Description (SVDD) is an ML method used as a one-class classifier to 

serve anomaly detection tasks [9]. It utilizes healthy samples to construct a hyper-sphere feature 

space as a detection threshold. Recently, SVDD is extended as Deep SVDD, which exploits the 

powerful hierarchical feature extraction ability of deep neural networks [10]. 

 

The authors previous research [11] has proved the effectiveness of combining indicators from 

cyclic spectral analysis with SVDD method. In this paper, the method will be extended with 

Deep SVDD model. A Deep SVDD model is proposed using Cyclic Spectral Coherence map 

as the input for helicopter anomaly detection. The methodology is applied, tested and evaluated 

on a helicopter vibration dataset. Experimental results show that the proposed method is able to 

reach high anomaly detection accuracy, which indicates its promising potential in industrial 

application. 

 

Theories 

 

Cyclic spectral analysis  

 

The vibration of rotating mechanical components usually performs cyclostationarity, which is 

a stochastic process caused by systematic periodicities. When a defect is generated during 

machinery operation, it usually presents as a series of repetitive shocks modulated by 

frequencies from other components within the cyclic transient signatures. Cyclostationarity can 

be defined based on the orders of moments. The first-order cyclostationarity (CS1) is the 

statistical mean related to the components phase-locked with rotor speed, therefore contains the 

characteristics from shaft misalignments, imbalances, or flexible coupling [3]. The second-

order cyclostationarity (CS2) signature can reveal the hidden periodicity related to the shaft 

speed with the autocorrelation function. It has been used in the diagnostics of the rotating 

components not completely phase-locked with the rotor speed [12]. 

 

Cyclic Spectral Correlation (CSC) is a tool for the spectral analysis of cyclostationary signals 

using the autocorrelation function of two frequency variables, i.e., the cyclic frequency related 

to the modulation and the spectral frequency related to the carrier. Therefore CS1 and CS2 

signals can be described in the frequency-frequency domain based on the correlation 

distribution: 

 

𝐶𝑆𝐶(𝛼, 𝑓) = lim
𝑊→∞

1

𝑊
𝐸{𝐹𝑊[𝑥(𝑡)]𝐹𝑊[𝑥(𝑡 + 𝜏)]∗}                            (1) 

 

where 𝑥(𝑡) represents the time signal over a time duration 𝑊, and 𝜏 is the time-lag. 𝐸 is the 

ensemble average operator, and 𝐹 stands for the Fourier transform. CSC leads to a bi-variable 

map with the cyclic frequency 𝛼 and the spectral frequency 𝑓. The normalization of the CSC 

map between 0 and 1 can reduce the uneven distributions, which leads to the Cyclic Spectral 

Coherence (CSCoh) as follows:  

  

𝐶𝑆𝐶𝑜ℎ(𝛼, 𝑓) =
𝐶𝑆𝐶(𝛼,𝑓)

√𝐶𝑆𝐶(0,𝑓)+𝐶𝑆𝐶(0,𝑓−𝛼)
                                        (2) 

 

Both CSC and CSCoh are effective tools to reveal the masked, hidden characteristics within the 

cyclostationary signals. CSC is more used for trace the fault trending, but CSCoh can better 

detect the anomalies from the vibrations. 

 

Unsupervised deep One-Class classification 
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Support Vector Data Description (SVDD) method was proposed as a One-Class (OC) anomaly 

detection method. It projects the data samples to a hyper-sphere feature space. By minimizing 

the volume of the sphere, it can separate the anomalies from normal data samples. For the input 

data space {𝑥1, 𝑥2, … , 𝑥𝑛} ∈ Χ and the output feature space 𝜙𝑘(𝑥𝑖) ∈ Η𝑘, the objective function 

of the mapping Χ → Η𝑘 with kernel 𝑘 can be described as follows: 

 

𝑌(𝑅, 𝑎) = min 𝑅2 +
1

𝜐𝑛
∑ 𝜉𝑖

𝑛

𝑖=1

 

𝑠. 𝑡.  ‖𝜙𝑘(𝑥𝑖) − 𝑎‖2 ≤ 𝑅2 + 𝜉𝑖             ∀𝑖, 𝜉𝑖 ≥ 0                                (3)      

 

where 𝑎 is the center of the sphere and 𝑅 is the radius. 𝜉𝑖 is the slack variable which gives a 

flexible boundary of the sphere, and 𝜐 ∈ (0,1]  is the penalty parameter related to the 

proportion of rejected outliers. Eqn. 3 can be further transformed to a dual problem solved by 

kernel function-based method [9].   

 

When applying the classic OC-SVDD in anomaly detection cases, the inputs are usually the 

health indicators, which require expert knowledge to extract from the raw measurements. On 

the one hand, this increases the complexity of the anomaly detection procedure with an extra 

indicator selection step. On the other hand, the detection accuracy highly relies on the quality 

of these indicators. In order to exploit the strong non-linear representation learning ability of 

networks, an unsupervised deep OC anomaly detection method, Deep SVDD, has been 

proposed [9]. Instead of directly using indicators to train the SVDD hyper-sphere, Deep SVDD 

uses the deep neural network to extract smart features from the inputs. The schematic of Deep 

SVDD is shown in Fig. 1.    

 

 
Fig. 1:  The schematic of Deep SVDD. 

 

Following the SVDD, the aim of the Deep SVDD is to minimize the volume of the data-

enclosing sphere and jointly learn the weights of the network. Consider a neural network 

𝜙(∙; 𝑊):  Χ → H with weight 𝑊, the optimization function of Deep SVDD can be described 

as follows:   

 

𝑌1(𝑅, 𝑎, 𝑊) = min 𝑅2 +
1

𝜐𝑛
∑ max{0, ‖𝜙(𝑥𝑖; 𝑊) − 𝑎‖2 − 𝑅2}𝑛

𝑖=1 +
𝜆

2
∑ ‖𝑊𝑙‖𝐹

2𝐿
𝑙=1       (4)     

 

With a sphere characterized by the center 𝑎 and radius 𝑅, the minimization of 𝑅2 will lead to 

the minimum volume. The second term of Eqn. 4 is the penalty from the points outside the 

boundary, where 𝜐 is acting the same role as in Eqn. 3. In the third term, 𝑊𝑙 represents the 

weight for the 𝑙-th layer, and ‖∙‖𝐹 is the Frobenius norm. 𝜆 > 0 is a hyper-parameter to regulate 

the weight decay.  
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Deep SVDD can use various forms of representations from the raw measurements as inputs for 

smart feature extraction instead of using the engineering health indicators. The multi-layered 

network structure makes it suitable for learning representations from hierarchical data like 2D 

images.   

 

Methodology 

 

Since the CSC and CSCoh approaches have the strong power to reveal the hidden periodic 

information from the cyclic vibration signals, it has been utilized to generate 2D representations 

as the inputs for smart feature extraction within deep learning models [12]. In order to make a 

high accuracy detection method, this paper proposes an unsupervised anomaly detection model, 

combining the CSC/CSCoh method with the Deep SVDD model, as illustrated in Fig. 2. 

 

 
Fig. 2:  The proposed CSCoh-based Deep SVDD method. 

 

The raw vibration signals from the healthy training dataset are firstly transformed to frequency-

frequency 2D representations using CSC/CSCoh, and then sent to the Deep SVDD model. The 

feature extractor of the Deep SVDD is composed by four Convolutional Neural Network (CNN) 

blocks, and each block contains one convolution layer (Cov: kernel size=3), one maxpooling 

layer (MP: kernel size=2), and one batch normalization layer (BN). An adaptive maxpooling 

layers (AdpMP) is added to the last CNN block. Two dense layers follows the flatten layer with 

size 1024-128 using ReLU activation. For the hyper-sphere SVDD part, the hyper-parameter 𝜆 

is set to 0.1 and the trade-off proportion parameter is set to 0.01.  

 

Experiment 

 

Experimental dataset 

 

A helicopter vibration dataset from Airbus SAS is used for the experiment [14]. Each sample 

from the dataset contains vibration signals gathered from accelerometers mounted on different 

positions of helicopters with a sampling frequency of 1024 Hz. The signals are grouped in two 

sub-sets, including the training dataset with 1677 samples from normal flights and the validation 

dataset with 594 samples from both normal and abnormal flights. 

 

Comparative analyse methods 

   

In order to compare different cyclic spectral analysis approaches, both the CSC and CSCoh 

maps are used as the inputs of the proposed Deep SVDD model. Four different CNN-based 

network architectures are adopted to compare the feature extraction efficacy, including the 

proposed four-block CNN model, the AlexNet, the ResNet, and the LeNet. Furthermore, two 

reconstruction-based anomaly detection methods, i.e., GAN, and VAE, are also used on the 

CSC and CSCoh maps to compare the results. 
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Results 

 

The anomaly detection results are evaluated by True Positive Rate (TPR), False Positive Rate 

(FPR), F1-score, and Area Under the receiver operating characteristics Curves (AUC). The 

anomaly detection results from different Deep SVDD models with both CSC and CSCoh as 

inputs are listed in Table 1. It can be found that, in general, the CSCoh inputs perform better 

than the CSC. The highest F1-score yields 0.91, which is found from the proposed CNN-based 

Deep SVDD with CSCoh inputs. 

 

Table 1:  Anomaly detection results of Deep SVDD models. 

 

 
CSC CSCoh 

CNN AlexNet ResNet LeNet CNN AlexNet ResNet LeNet 

TPR 0.82 0.89 0.42 0.74 0.91 0.85 0.85 0.80 

FPR 0.02 0.09 0.20 0.00 0.00 0.04 0.10 0.12 

F1-score 0.87 0.76 0.59 0.81 0.91 0.80 0.66 0.82 

AUC 0.86 0.74 0.80 0.82 0.90 0.82 0.81 0.82 

 

The results from reconstruction-based methods are shown in Table 2. The VAE model gets 

higher F1-score and AUC value than the GAN model for both inputs. However, compared to 

the Deep SVDD method, both the GAN and the VAE model yields lower detection accuracy. 

On the other hand, it should be noticed that, for the GAN model, the CSC inputs get better 

performance than the CSCoh inputs, which behave differently from the other methods.      

 

Table 2:  Anomaly detection results of reconstruction-based methods. 

 

 
CSC CSCoh 

GAN VAE GAN VAE 

TPR 0.70 0.83 0.65 0.85 

FPR 0.00 0.12 0.02 0.04 

F1-score 0.76 0.78 0.73 0.84 

AUC 0.79 0.80 0.70 0.84 

 

Conclusions 

 

This paper proposed an unsupervised deep learning approach for helicopter anomaly detection 

based on cyclic spectral analysis. A CNN-based Deep SVDD model is constructed with CSC 

and CSCoh maps as inputs. The methodology is applied on a helicopter vibration dataset from 

Airbus, and experimental results show that the method can reach high detection accuracy with 

promising potential for industrial application. 
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