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Abstract 

 

Managing military aircraft fleets is a challenging enterprise.  Fleet planners have to balance 

day-to-day tasking requirements with the long-term management of the fleet through to life-of-

type. They also have to deal with unscheduled maintenance events, and short-turnaround high-

priority tasking, which can render their short-term plans redundant.  A sequence of poor short-

term decisions can have cascading effects in the medium- and long-term: for example, leading 

to the premature retirement of individual aircraft from a fleet.  In this paper we summarise the 

application of various optimisation techniques to help address these problems in military aircraft 

fleet management.  The techniques are applied to both day-to-day planning and medium-term 

forecasting that includes unscheduled maintenance effects, and long-term fleet planning out to 

life-of-type including fatigue effects.  Aspects of this work are being developed into a software 

tool for use by Royal Australian Air Force fleet planners.   

 

Keywords: military aircraft fleet planning, unscheduled maintenance, life-of-type 

management, mathematical programming, sequential stochastic optimisation, data sciences. 

 

Introduction and problem description 

 

Military aircraft fleet management is a complex, multi-dimensional problem with often-

competing priorities.  Prosecuting its many aspects successfully is a challenging undertaking 

for any fleet planner or manager.  Fleet planning decisions that seem appropriate in the short-

term may have adverse longer-term consequences.  While numerous decisions need to be made 

each day, the aim of fleet planners is to manage the fleet such that it can meet any requirement 

on any day of a fleet life, which is typically 20-30 years but can be longer.   

All of these decisions are constrained by maintenance requirements.  Each fleet follows a 

documented maintenance schedule such as a Technical Maintenance Plan (TMP).  The TMP 

specifies maintenance intervals and durations for particular services, and identifies the 

maintenance organisations that are eligible to undertake those services.  Some services may 

have intervals based on flying hours, others based on elapsed time, and others based on 

achieving whichever of those comes first.  Additional services may be triggered by other factors 

such as engine cycles, or are condition-based.  Furthermore, unscheduled maintenance is a 

frequent disruptor to fleet planning and can result in significant changes to any plan.  

Table 1 illustrates some of the issues faced by fleet planners at various intervals. 

 



PEER REVIEW 

 

19th Australian International Aerospace Congress, 22-25 November 2021, Melbourne 

 

Table 1: Fleet planning issues at various intervals 

Interval Fleet planning issues 

Daily Flying and maintenance allocations; short-interval maintenance; 

unscheduled maintenance; immediate high-priority tasking 

Monthly Training exercises; deployments/operations; longer-interval maintenance 

Multi-month Deployment durations; aircraft rotations between squadrons 

Annually Flying and other targets (e.g. training) 

Multi-year Modification programs; contractor maintenance; usage rates 

Life-of-type Phased withdrawal from service 

There have been several notable instances when fleet management practices have led to poor 

outcomes such as deficient readiness levels.  For a maritime example, none of the Royal 

Australian Navy’s fleet of three amphibious warfare ships were available to provide support to 

the Cyclone Yasi relief operation in 2011 [1].  A battalion of US Army UH-60 Blackhawk 

helicopters could only deploy 9 of the 24 aircraft to support peace operations in Bosnia in 1995 

despite reporting 89% of aircraft as fully mission capable [2].  An optimisation-based strategy 

could have saved 1.88 aircraft lifetimes (> US$83M in acquisition costs) on a 41 aircraft sub-

fleet of the United States Air Force’s A-10 Thunderbolt II fleet over the last several years of its 

life [3].  These examples both typify the lack of decision-support tools available to military 

aircraft fleet planners and highlight the need for same.   

The military aircraft fleet management literature is still relatively young but growing.  Most of 

the literature has focused on deterministic optimisation applications over particular timeframes, 

such as a daily plan lasting for a month [4], a weekly plan for 12 weeks [5], or a monthly plan 

for 6 months [6].  Algorithms have been developed that exploit the objective and structure for 

particular problems that provide exact solutions rapidly [7].  These papers only consider 

scheduled maintenance.  Other simulation-based approaches have been developed that include 

multiple types of scheduled and unscheduled maintenance ([8], [9]).  When applied using 

simulation experimental design approaches, these can provide insights into the key influences 

on fleet metrics.  Other papers explore the application of machine learning techniques to these 

problems, both for simulation models [10] and optimisation models [11].  

In this paper we summarise a multi-layered approach to addressing questions in military aircraft 

fleet planning, from day-to-day management through to life-of-type.  Our exemplar fleet is the 

Royal Australian Air Force (RAAF)’s C-130J fleet of 12 aircraft.  This fleet was chosen to 

demonstrate the capability and utility of our approach because it has been operational for many 

years and thus provides a relatively rich and mature source of data.  In the following sections, 

we provide descriptions of our approach, targeted at different levels of the fleet planning 

problem; how they might be integrated; and a short outline of the current status of a software 

tool being developed from this work.  We conclude with a brief summary and possible further 

applications and extensions. 

 

 

Solution approaches 

 

Due to the multi-dimensional nature of military aircraft fleet planning, we tailor our approach 

accordingly.  Our models have been developed and refined following extensive consultation 

with C-130J stakeholders from Defence and industry.  Both employ optimisation-based 

approaches.  The first approach explicitly includes the impact of unscheduled maintenance in 

forecasting future fleet performance within a stochastic optimisation framework.  The second 

approach considers issues of multi-year fleet planning out to life-of-type within a deterministic 

optimisation framework.   
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Managing uncertainty 

 

We describe the incorporation of unscheduled maintenance effects into the military aircraft fleet 

planning space as “managing uncertainty”.  Aside from an earlier instantiation [12] upon which 

we build in this work, we are unaware of comparable work in this domain that seeks to include 

random effects within the framework of an optimisation approach.  

 

The managing uncertainty model includes all types of maintenance that impact the fleet at the 

chosen resolution (generally, daily).  This incorporates intervals, durations, induction windows, 

and the eligible maintenance organisations.  More frequent services are typically undertaken by 

uniformed personnel at a squadron, while less frequent but longer duration services are typically 

performed by contractors.  The model also includes deployments and exercises, as well as 

deployed maintenance and pre- and post-deployment maintenance.  The treatment of 

deployments in the model integrates the maintenance system with the fleet’s operational 

capability.  The model is targeted to assist both squadron maintenance coordinators with short-

term decisions, and wing and squadron fleet planners with longer-term trends and forecasts. 

 

To incorporate unscheduled maintenance effects, the model uses probability distributions for 

intervals and durations.  These distributions are derived from C-130J fleet data using data 

analytics techniques such as data mining and Maximum Likelihood Estimation to fit the 

distributions.  Consequently, distributions have been fitted for each individual aircraft, and are 

extensible to provide distributions by mission type. 

 

The model is formulated as a sequential stochastic optimisation problem.  Figure 1 illustrates 

the sequential stochastic optimisation paradigm, whereby a stochastic optimisation problem is 

solved each day as new information arrives: in this case the realisation of unscheduled 

maintenance drawn from those probability distributions.   

 

 
Figure 1: Sequential stochastic optimization paradigm 

 

There are two phases to the sequential stochastic optimisation paradigm.  The first is the 

“learning” phase, where we discover the policy (as opposed to a fixed plan) that provides the 

best overall outcomes against the objective over a number of simulated possible futures.  Having 

determined this policy, the second “doing” phase implements this policy through daily decisions 

as in Figure 1.   

 

There are five fundamental elements of these problems [13]: states (𝑆𝑡), decisions (𝑥𝑡), 

exogenous information (in our case, random unscheduled maintenance events), the transition 

function (which moves the system from state 𝑆𝑡 to 𝑆𝑡+1), and the objective function.  A typical 

objective function for this type of sequential stochastic optimisation problem takes the 

following form: 

 

max
𝜋∈𝛱

𝐸{∑ 𝐶(𝑆𝑡, 𝑋𝑡
𝜋(𝑆𝑡))|𝑆0𝑡𝜖𝑇 }                                     (1) 
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In equation (1), Π is the set of allowable policies, 𝐶(𝑆𝑡, 𝑋𝑡
𝜋(𝑆𝑡)) is the contribution function 

(which captures the reward for making a decision 𝑥𝑡 in state 𝑆𝑡) and 𝑋𝑡
𝜋(𝑆𝑡) is a policy that 

returns feasible decisions 𝑥𝑡.  Equation (1) therefore seeks to find the policy that maximises the 

expected value of the contribution function over the desired time horizon.  The expectation is 

required due to the explicit inclusion of unscheduled maintenance effects in the model.   

 

Consider an example where the objective is to determine the optimal maintenance policy that 

maximises long-term fleet serviceability (where a ‘serviceable’ aircraft is one that can fly).  The 

“policy” options to achieve this may be the preference to “induct aircraft into maintenance early 

in their maintenance window” or “induct aircraft into maintenance later in their maintenance 

window”.  Each policy would then be tested over a statistically-significant number of simulated 

future scenarios, each providing different instances of unscheduled maintenance.  In each 

scenario, aircraft inductions dates would follow those maintenance policies.  The policy that 

provides the best overall outcomes against the objective (equation (1)) would be chosen.  Once 

chosen, that maintenance policy would be implemented in real-life (i.e. a single future) fleet 

planning. 

 

The managing uncertainty model can operate at multiple levels.  It can provide decision support 

over short timescales (using the policy in the previous paragraph): which aircraft to deploy and 

when to deploy them; when to induct an aircraft into maintenance; when to move aircraft 

between contractor and squadron maintenance; and how to allocate maintenance manpower to 

unserviceable aircraft.  It can also provide long-term forecasts of fleet performance, such as the 

probability of achieving a certain number of serviceable aircraft over a chosen time horizon. 

 

For further information on the approach, the reader is referred to [13].  A more comprehensive 

description of the methodology will be provided in a future publication. 

 

Managing to life-of-type 

 

The managing to life-of-type model considers issues pertaining to multi-year fleet planning out 

to the fleet Projected Withdrawal Date (PWD).  It is a deterministic optimisation model and 

thus excludes any random effects.  The model operates at coarser time steps (no shorter than 

one week) for multi-year timeframes and is targeted to assist fleet planners at an aircraft wing.  

Inputs include deployment and exercise requirements (including pre- and post-deployment 

maintenance), stand-down periods for the workforce, TMP maintenance (intervals, durations 

and induction windows) at the appropriate resolution, modification programs, and flying 

requirements for the fleet and each squadron, as well as model parameters.  Related long-term 

fleet planning work is more focussed on mission assignment (e.g. [3], [11]).   

 

There may be multiple objectives for the life-of-type model, reflecting the reality of competing 

priorities for fleet planners.  Therefore the objective function for the managing to life-of-type 

model takes the following form: 

 

Minimise 𝑍 =  ∑ 𝑤𝑝𝑝∈𝑃 𝐸𝑝 + (∑ 𝑤𝑣𝑙
− 𝐷𝑣𝑙

−
𝑣∈𝑉,𝑙∈𝐿 + ∑ 𝑤𝑣𝑙

+ 𝐷𝑣𝑙
+

𝑣∈𝑉,𝑙∈𝐿 )                (2) 

 

Equation (2) seeks to minimise variation from fleet planning targets.  If all targets are met, the 

value of the objective function is zero.  In equation (2), the 𝐸 terms represent the difference 

from the target, the 𝐷 terms represent the penalties (explained below) and the 𝑤 terms represent 

the weights on those differences and penalties.  The weights may be varied according to fleet 

planning priorities.  The model is constructed in this way to both allow flexibility and avoid 

infeasibilities.  Because of the multiple competing priorities, it may be simply impossible to 

exactly meet all targets, which would result in no solution.   
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There are two groups of terms in the objective function equation (2).  The first group covers the 

set of all variables 𝑃 that includes terms that reflect targets where shortfalls may arise.  These 

may include meeting annual flying targets for a fleet and each squadron; meeting targets for the 

number of deployed aircraft; and flying aircraft into maintenance (i.e. such that their flying 

hours interval and elapsed time interval coincide).  In these instances, the target may be 

exceeded without penalty (as in the case of flying hour targets) or be a hard limit (for 

maintenance inductions).  The second group in parentheses covers the set of all variables 𝑉 that 

includes terms that reflect targets that should be met precisely: i.e. not have a shortfall nor be 

exceeded (hence the negative and positive superscripts).  These include meeting availability 

targets (where an aircraft is considered available if it is not in contractor maintenance).  It should 

be noted that these requirements can vary throughout the time horizon: e.g. there may be 

different deployment requirements at different times of year; availability targets may be lowered 

during a block upgrade program; etc. 

 

Any variation from the target can be penalised in two ways.  For flying hour target shortfalls, 

the amount of the shortfall is used directly (the 𝐸 terms in equation (2) grouped by set 𝑃).  For 

variations around availability targets (grouped by set 𝑉), these are penalised piecewise linearly: 

the greater the difference, the greater the penalty [2].  This allows some variation when targets 

simply cannot be met exactly, but increasingly discourages greater variation from that target.  

The typical form of these constraints is shown in Equations (3) and (4): 

 

𝐸𝑣 ≤ ∑ 𝐷𝑣𝑙𝑙                                                   ∀𝑣 ∈ 𝑉   (3) 

 

𝐷𝑣𝑙 ≤ 𝛿𝑙                                              ∀𝑣 ∈ 𝑉, 𝑙 ∈ 𝐿   (4) 

 

Equation (3) splits the difference from the target (the 𝐸𝑣 terms) into component terms 𝐷𝑣𝑙 based 

on levels 𝑙.  The values of 𝐷𝑣𝑙 are constrained by 𝛿𝑙 in equation (4).  For example, if there were 

a flying hour shortfall 𝐸 of 100 hours, equations (3) and (4) may give 𝐷𝑙 = 20 + 30 +50 hours 

for 𝑙 = 1 … 3, and the respective weights 𝑤𝑙 on each in the objective function (2) may be 0, 5 

and 15.  In this example, we completely tolerate a shortfall of 20 hours, somewhat tolerate a 

shortfall of up to 50 hours, but discourage a shortfall of greater than 50 hours. 

 

The multi-objective nature of equation (2) can make the solution time prohibitive.  To address 

this, a user may wish to omit some terms that are not deemed suitably important.  Alternatively, 

equation (2) can be addressed heuristically by first solving for the highest-priority objective(s), 

and then using those results as inputs to solve again for other objectives.  The latter approach is 

generally adopted as it directly reflects fleet planner priorities and is faster to execute.   

 

PWD management is a key aspect of the life-of-type model.  Analogous to methods used in 

previous papers (e.g. [2], [4]), it pre-calculates desired positions (based on targets) for the fleet 

at the end of the chosen time horizon, and allocates each aircraft uniquely to one position.  The 

targets reflect some measure of overall aircraft usage such as total flying hours.  The user can 

choose the positions based on achieving some desired distribution and/or range.  The intent is 

to achieve a phased withdrawal of a fleet from service at PWD to accommodate the phased 

introduction of a new fleet.  This will avoid individual aircraft retiring prior to PWD through 

over-utilisation, or conversely having aircraft still with hours remaining at PWD (as in [3]). 

 

In accordance with meeting the objectives, the model generates decisions regarding: which 

aircraft to fly in each time period, how much they fly, and the squadron to which they are 

allocated; which aircraft to send on deployments or exercises, when to induct aircraft into 

maintenance given their maintenance window; and the schedule for a modification program or 
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programs.  It thus provides an optimal flying, deployment, maintenance and modification plan 

against the chosen objectives each time period for the chosen time horizon (assuming zero 

unscheduled maintenance). 

 

Integration of the two models 

 

The models both utilise two types of inputs.  One type is general input data such as TMP 

information, flying limits, deployment and exercise requirements, etc.  The second type is the 

initial status of the fleet: the current location of each aircraft, the elapsed time and flying hours 

since its last service of each maintenance type, etc.  The models are designed to include this 

information so that it can produce outputs based on real time periods.  Thus the models can 

include actual dates for stand-downs and exercises as inputs, and produce actual maintenance 

induction or deployment dates, or financial year-reporting for flying hours achieved. 

 

Table 2 compares the modelling approaches.  Clearly there is overlap between what the models 

include and what they can produce.  While they are targeted at different questions in the broader 

fleet planning space, there is commonality in such areas as the choices of aircraft to deploy and 

maintenance inductions.   

 

Table 2: Comparison between modelling approaches 

 Uncertainty model Life-of-type model 

Resolution Daily Weekly-monthly 

Time horizon Up to a few years Up to life-of-type (20-30 yr) 

Scheduled maintenance Intervals from daily to longest  From weekly to longest 

Unscheduled maintenance Yes No 

Maintenance organisations All Only contractor 

Deployments/exercises Yes, including maintenance Yes 

Modifications Can be fixed to test impacts Schedule output from model 

Usage rates Yes (not optimisation output) Yes (optimisation output) 

 

There are various ways that the models can be utilised together to provide a “complete” picture 

for fleet planners.  One option is the following: 

 Run the life-of-type model to generate a “plan” that incorporates all aspects of multi-

year planning such as deployments, maintenance, modifications and PWD management; 

 Using the outputs from the life-of-type model as a guide, run the uncertainty model to 

provide a “sanity check”.  This may reveal, for example, that an aircraft identified for 

deployment by the life-of-type model may not be the best candidate due to expected 

unscheduled maintenance; 

 Re-run the life-of-type model, using the most-likely results from the “sanity check” 

uncertainty model run as fixed inputs.  

 

If such an approach is taken, greater weighting should be placed on likely outcomes in the 

immediate future when utilising them in the life-of-type model.  The further into the future, the 

less reliable the forecast, especially if there are very high levels of uncertainty. 

 

Current status 

 

The managing uncertainty model is currently being converted into a software tool for usage by 

the C-130J fleet planning community.  The tool, tentatively named Delphi, is being developed 

by the Augmented Aviation Asset Intelligence (A3I) program within the Air Domain Centre of 

Capability Acquisition and Sustainment Group (CASG).   
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The development of the Delphi system is being conducted in partnership with industry and 

Chief Information Officer Group (CIOG) to enable rapid deployment of Delphi onto Defence 

networks.  Additional stakeholders include other Defence groups and Defence industry. 

 

 

Conclusion and future work 

 

This paper has described how optimisation models have been used to address the range of 

problems faced by fleet planners, from day-to-day through to life-of-type.  We have summarised 

how the two models operate: both independently, and how they may be used in conjunction.   

 

Future work will extend the models to larger fleets and different fleet types (than transport 

aircraft) to test the robustness of the methods to these different circumstances.  Other extensions 

may include fleets in different domains (land and maritime), as well as to further sub-problems 

within the fleet planning space, such as maintainer-to-task allocation and aircrew-to-aircraft 

assignment. 

 

As we have described, the managing uncertainty model explicitly incorporates unscheduled 

maintenance within its modelling framework, using observed unscheduled maintenance data 

from the fleet under consideration.  The methodology therefore examines how best to respond 

to unscheduled maintenance events.  We do not attempt to use this work to predict when 

individual unscheduled maintenance events may occur (e.g. as for US Navy platforms in [14]).  

However, the impact of alternative maintenance philosophies can be tested within the modelling 

framework: e.g. when changing the elapsed time or flying hour interval between services.  It 

could also be used to make predictions on the best fleet maintenance policies to use during 

different periods of the bathtub curve [15].  If the intent is to determine the optimal value of the 

“probability of failure” at which aircraft in a fleet should be inducted into unscheduled 

maintenance in order to maximise overall serviceability, an alternative formulation would be 

required.  

 

We also treat an individual aircraft as our ‘quantum’, meaning that we do not consider specific 

failures of various sub-components such as parts of the airframe or the engine.  Rather, any 

failures are aggregated to the aircraft level.  This does not preclude future work from pursuing 

the viability of using these concepts at the sub-component level.  Before proceeding however, 

the trade-off should be explored between any benefits obtained by operating at that level against 

the costs of increased model complexity. 
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