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Abstract 

 

Health monitoring’s purpose is to anticipate failures, minimize unexpected maintenance, and 

improve overall safety in complex systems. Gearboxes are a critical component where health 

monitoring can significantly improve reliability. The goal of these techniques is to detect and 

localize damage in its early stages, enabling proactive maintenance and preventing catastrophic 

failures.  

 

In gearbox analysis, distinct rotational speeds of gear components are reflected in the spectral 

signature of accelerometer measurement. They provide a rich source of information for fault 

detection. However, extracting meaningful insights from these signals can be challenging, 

particularly in the presence of noise and variability.  

 

Various approaches exist to filter measurements based on theoretical frequency components -

such as time synchronous averaging - or isolate characteristic frequency peaks in spectrum.  

Unfortunately, these methods can be time-consuming, require fine-tuning of parameters, or rely 

on expert knowledge to target specific areas of interest.  

 

We propose a Topological Peak Identification Algorithm (TPI), leveraging techniques from the   

Topological Data Analysis domain. This approach offers an efficient and robust method to 

extract peaks from a signal's spectrum. By creating a filtration and keeping groups based on 

persistence along the height of local maxima, TPI requires minimal parameterization and can 

identify subtle changes in spectral features. 

 

We demonstrate the application of TPI to a gearbox with a tooth root crack from HUMS2023 

contest dataset, associating retrieved frequencies with specific gearbox components. The results 

highlight the potential of TPI to enhance condition-based maintenance by providing early fault 

detection, reducing maintenance costs, and improving overall system reliability. 

 

Keywords: Health Monitoring, spectral analysis, peak detection 

 

 

Introduction 
 

Health monitoring is a critical aspect of maintaining complex systems, and gearbox analysis is 

a prime example of its importance. The goal of health-monitoring techniques is to detect and 

localize damage in its early stages, enabling proactive maintenance and minimizing the risk of 

catastrophic failures. In gearbox analysis, distinct rotational speeds of gear components are 

reflected in the spectral signature of accelerometer measurements, providing a rich source of 
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information for fault detection. However, extracting meaningful insights from these signals can 

be challenging, particularly in the presence of noise and load variability. 

 

Topological Data Analysis (TDA) has emerged as a powerful tool for signal processing [1], 

particularly in the context of persistence based clustering [2] or shape segmentation [3]. TDA 

provides a robust and efficient way to extract meaningful features from complex data, with a 

demonstrated stability toward noise [4]. Several applications in medical domain have proven 

its usefulness, such as arrhythmia detection from ECG signals [5], or pedestrian movements 

analysis [6]. Filtrations built using TDA allow identifying emergences in scalar fields. As an 

example, such approach has been used for identifying 2D peaks in gaz spectrometry [7]. 

 

For crafting health monitoring indicators, many approaches aim at separating sources in the 

signal [8], or at finding modulations in spectral signature mapped to characteristic frequencies 

of parts of the system [9]. For identifying these frequencies in the spectrum, naive approaches 

rely on setting absolute amplitude threshold and focus on local areas of the spectrum, which 

makes them sensitive to noise or to spectrum baseline variations, leading to manual selection of 

frequencies or iterative processes.  

 

In this article, we propose a Topological Peak Identification algorithm (TPI) based on filtration 

algorithms of the TDA domain. The algorithm we introduce has already been implemented for 

identifying peaks in temporal data [10], we use it in this paper for crafting a new vertex 

representation of the spectrum defined by all the identified peaks on the logarithm of the 

spectrum. Then, we process this set of peaks separately for building health indicators. 

 

The proposed algorithm is presented in the next section, where we detail its application and 

usefulness for spectrum segmentation. We then demonstrate the effectiveness of the algorithm 

in a health-monitoring context. 

 

 

Filtration algorithm for peak detection in spectrum 
 

The filtration algorithm automatically generates a filtration of the spectrum and extracts its 

expressive frequencies, characterized by their amplitude values. 

 

Algorithm 

 

The proposed peak detection algorithm, adapted from the 1D version presented in [10], 

leverages the principles of topological data analysis to efficiently extract significant frequency 

components from a given spectrum. The algorithm operates on a spectrum defined as a set of 

points {(𝑥𝑖, 𝑦𝑖), 𝑖 ∈ [1, 𝑁]}, where x is the frequency axis and y is the magnitude axis. 

 

We create groups of points named 𝑔 defined as a connected set of points; its peak is the point 

with the highest magnitude and its saddle the one with lowest magnitude (see Fig1a). We define 

the border of a group as the set of the two external nodes that are directly connected to it. 

 

The algorithm traverses all points of the spectrum in decreasing order of amplitude. When an 

isolated point is selected (i.e. its neighbor points have lower values and hence have not yet been 

selected), it corresponds to a peak and a new group is created. Therefore each peak will 

correspond to one group. The groups grow by absorbing all the points connected to it until two 

groups meet. In this situation, the group with highest peak value absorbs the second one (see 

Fig 1a: the orange group absorbs the green one then continues growing until meeting the blue 

one). This second group is recorded with following information: all its constitutive points, its 
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creation peak, and the saddle point where it met the other group. The difference of amplitude 

between the creation and deactivation points of the group is its relative amplitude.  

 

 
Algorithm: Topological Peak Detection algorithm 

 

In the end of the algorithm, all recorded groups are retrieved, and we select the groups which 

relative amplitude exceeds a threshold. By setting a suitable threshold (see Fig 1b), the 

algorithm effectively segments the spectrum into distinct regions, each representing a 

significant frequency component. 

 

This approach provides a robust and efficient method for peak detection, particularly in the 

presence of noise. As shown in Figure 1b, local variations due to noise correspond to groups 

with small relative amplitudes, while the main components of the spectrum with higher relative 

amplitudes are isolated in the amplitude histogram. The algorithm is insensitive to baseline 

variations in the spectrum since the peaks are isolated by their relative amplitude, and it can 

easily distinguish between noise and significant spectral components. 

 

    
Fig 1a: segmented spectrum and identified peaks, Fig 1b: histogram of relative amplitude  
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Applications for health monitoring 
 

The extracted points of the spectrum form the basis of a health-monitoring indicator, established 

through the mapping of these points to specific system components. When applied to the 

HUMS2023 dataset, this indicator demonstrates its effectiveness in following the condition of 

a helicopter gearbox with a propagating crack. 

 

HUMS2023 contest dataset for gearbox monitoring 

 

The HUMS2023 data challenge [11] presents a dataset comprising accelerometer measurements 

aimed at monitoring crack propagation in a planet of a gearbox. The dataset includes 518 

recordings of four accelerometers, taken at various time intervals. The objective of the challenge 

is to detect the presence of the defect in the signal at the earliest possible stage and to accurately 

track its progression over time. 

 

Peak detection on Gearbox accelerometer signals 
 

In the following, spectrum are presented with frequency order in abscissa (with f = 1. For 1 

planet rotation) and ordinate is on logarithmic scale. Upon calibration of a fixed threshold, our 

algorithm extracts approximately 1400 peaks per file when applied on the logarithm of the 

spectrum. This number remains stable across the entire dataset. 

 

We define the set of frequencies associated to each part: {𝑛. 𝑓𝑖 , 𝑛 ∈ ℕ}, where 𝑓𝑖 is the frequency 

associated to the part (1. for the planets and 0.35353 for the planet carrier), and we call these  

sets “modulations”. 

 

A significant proportion of the extracted points correspond to modulations of the planets and 

their carrier, as evident in Figure 2a. Notably, when all points from the entire dataset are 

superimposed, robust frequency patterns emerge, manifesting as distinct vertical lines (see fig 

2b). This point representation of the spectra enables the monitoring of system evolution using 

a condensed representation, facilitating the development of health-monitoring indicators. 

 

     
Fig 2a: peaks detected on spectrum, Fig 2b: all detected peaks with 𝑓 ∈ [70,74] 

 

Health monitoring indicator 

 

We develop a health-monitoring indicator based on these points, grounded in the hypothesis 

that the amplitude distribution of these points within each file will evolve over time. 

Specifically, we anticipate that points corresponding to defective components will exhibit an 

increase in amplitude, whereas those corresponding to non-defective components will remain 

stable or exhibit a decrease. To operationalize this hypothesis, we divide the dataset into two 

groups based on the point’s amplitude values, and then identify points that can be reliably 

associated with the planet carrier in the high-amplitude group using a probability law 𝑝𝜂 (see 
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Fig3a) and the criterion 𝑝𝜂(𝑥𝑖) > 0.999. Notably, this criterion reveals that for all four sensors 

in the dataset, more than 95% of the points in the high-magnitude group can be associated to 

the planet carrier (see Fig3b), and this proportion decreases over time, thereby constituting a 

meaningful indicator of the system's health evolution. 

 

      
Fig 3a: probability law 𝑝𝜂 Fig 3b: rate of points in the higher group mapped to each part 

 

To monitor this decrease with higher accuracy, we average the rates of the four accelerometers, 

and then follow its evolution in logarithmic scale; this is our indicator (see Fig 4a). The indicator 

formula is: 𝑅𝑎𝑡𝑒𝐸𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = log (max
𝑖

𝑟𝑎𝑡𝑒𝑖 −  𝑟𝑎𝑡𝑒𝑖 + 𝜖), 𝜖 is set to avoid log(0) value. 

 

      
Fig 4a: RateEvolution indicator along time, Fig 4b: Blind deconvolution 

approach employed by the winning team of Vrije Universiteit [11] 

 

Interpretation 

 

The indicator increases along the test. A first notable threshold is reached at file #230, after 

which most of the points exceed the median of the previous ones, showing a statistical rupture 

in the point distribution. The moving average then increase significantly after file #300, which 

constitutes a second threshold. 

 

We interpret this result as the fact that the crack generates or increases amplitude of peaks 

related to the planets or other frequencies, resulting in a decrease of the proportion of peaks 

linked to the planet carrier among the peaks with highest amplitude in the spectrum. 

 

In contrast to energetic indicators, this indicator is more robust to variations in experimental 

conditions during testing (such as signal amplitude variations), as it is unaffected by scaling 

transform on accelerometric values since the points are detected in amplitude on a logarithmic 

scale and then compared to each other. Along [11], with traditional signal processing methods, 

earliest convincing detection from the data challenge was at file number #263 while more 

numerical approaches identify the crack emergence at file #175 (see Fig4b).  

  

File #230 

File #300 
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Conclusion 
 

This paper introduces an approach to automatic peak detection in spectra using topological data 

analysis, which allows exhaustive peak extraction with a linear complexity. By identifying a 

large number of peaks in the spectrum, we propose a new representation of the spectra, which 

remains robust over time. This representation enables the creation of indicators based on the 

cardinal of characteristic frequencies that detect subtle changes in spectral features. Health 

monitoring indicators developed using this approach exhibit high robustness to energy 

variations during testing. For future developments, the concise representation of the spectrum 

enables the development of new spectrum indicators using powerful mathematical tools, such 

as statistical model inference or optimal transport. 
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