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Abstract 

Anomaly detection for gears can be used to overcome the scarcity of faulty condition data in 

many geared systems by using only healthy data to train a model. Utilising reasonable 

preprocessing in combination with the Deep Support Vector Data Description, the one class 

classification method offers high accuracy in anomaly detection. This is shown in this paper 

based on analysing a run-to-failure gear dataset. Additionally, this paper utilises Shapley 

Additive Explanations to highlight relevant input features used in anomaly detection to enhance 

the trust and explainability of the network. The entire framework offers a stable, accurate and 

interpretable approach to detecting anomalies/faults in gears without the need of historical fault 

data and expert intervention. 

 

Keywords: Anomaly detection; Neural networks; Gear diagnostics; Fault detection; Signal 

processing 

 

Introduction 

Gears play a pivotal role in the reliable operation of rotational machines, and early fault 

detection is essential for avoiding costly failures and ensuring operational safety [1]. Traditional 

methods for fault detection include vibration signal analysis techniques, such as order tracking 

and synchronous averaging, which require expert knowledge for accurate fault identification 

[2]. Recent advances in machine learning (ML) offer automated solutions by leveraging large 

datasets, but most methods need labeled data for both healthy and faulty conditions, which are 

often unavailable [3]. This paper uses an anomaly detection (AD) approach with Deep Support 

Vector Data Description (Deep SVDD), allowing training on only healthy data, which 

overcomes the scarcity of fault data [4]. Additionally, Shapley Additive Explanations (SHAP) 

enhance the transparency and trust in the model’s decision-making process. 

This one-class classification was first introduced in [5], which serves as the fundament for the 

early AD networks. Over the years, AD methods have advanced from the less stable and 

inefficient approaches like One-Class SVM (OC-SVM) [6] to deep AD approaches [7,8]. In [9], 

the authors proposed a network which maps the processing data to a hypersphere. During 

training, the volume of this hypersphere gets minimised. Data which shows features distinct 

from the training data is mapped outside of the hypersphere and thus classified as an anomaly. 

In condition monitoring (CM), many publications utilise AD methods to detect faults during 

operation. Regression long short-term memory (LSTM) architectures are often combined with 

a one-class support vector machine (SVM) to perform AD in CM [10]. In [11], the authors used 

the Deep SVDD [9] to detect anomalies in a helicopter vibration dataset. They also used Cyclic 

Spectral Correlation and Cyclic Spectral Coherence as inputs and a convolution neural network 
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in combination with dense layers to create a hypersphere of the healthy data. A similar approach 

is published in [12] for bearings. The authors also include a data enhancement method for 

improved accuracy. None of the publications offers a detailed explanation of their AD 

algorithm, raising concerns about the explainability and trustworthiness of the detected 

anomalies. 

In this paper, the Deep SVDD [9] is utilised to map healthy preprocessed gear data. In the 

following, a run-to-failure test dataset is used to evaluate the performance of the technique. 

Finally, the network is analysed using the XAI method of SHapley Additive exPlanations 

(SHAP) [13] to ensure physically meaningful decision making and generalisability of the 

approach. The main contributions of the paper can be summarised as follows: 

1. AD for gear vibration data using the Deep SVDD [9] one-class classification method 

and analytical preprocessing of the raw data. 

2. Enhancing trust in the anomalies found using SHAP [13]. 

 

Methodology 

The methodology used in this paper consists of three main steps: (1) signal preprocessing, (2) 

AD using Deep SVDD, and (3) SHAP-based explanation. 

Pre-processing 

Raw vibration signals from the gear are challenging to analyse due to their non-stationary 

nature. Preprocessing starts with order tracking, which resamples the signal based on the 

angular position of the reference shaft, followed by synchronous averaging to reduce noise.  

In the resulting order-tracked signal, each sample corresponds to a specific angular position 

within a revolution of the shaft [14], and therefore the original 𝑓𝑠 samples-per-second vibration 

signal 𝑥(𝑛 𝑓𝑠⁄ ) is transformed to its angular domain counterpart 𝑥𝑂𝑇(𝑘 𝑁𝑠𝑝𝑟⁄ ) with 𝑁𝑠𝑝𝑟 

representing the number of samples per revolution chosen for the angular resampling, 𝑘 =
0, … , 𝑁𝑠𝑝𝑟𝑁𝑟𝑒𝑣 − 1 and 𝑁𝑟𝑒𝑣 indicating the number of full revolutions of the shaft recorded in 

the signal. 

To further enhance the data and reduce noise, synchronous averaging (SA) is used. The order 

tracked signal is segmented in single-revolution blocks (i.e., each block has a length 𝑁𝑠𝑝𝑟 

samples), and then a synchronous average is computed across all samples with the same angular 

rotation, i.e.: 

 𝑥𝑆𝐴 (
𝑘

𝑁𝑠𝑝𝑟
) =

1

𝑁𝑟𝑒𝑣
∑ 𝑥𝑂𝑇 (

𝑘

𝑁𝑠𝑝𝑟
+ 𝑟)

𝑁𝑟𝑒𝑣−1

𝑟=0

  with 𝑘 = 0, … , 𝑁𝑠𝑝𝑟 − 1 (1) 

Since the duration of the SA signal is exactly one revolution of the shaft, its spectrum 𝑋𝑆𝐴(ℎ) 

obtained via DFT contains only shaft harmonics, i.e., |𝑋𝑆𝐴(ℎ)| represents the amplitude of the 

ℎ-th harmonic of the shaft frequency. The value |𝑋𝑆𝐴(0)| is the mean of the acceleration signal, 

which is not used in the analysis of this paper. 

The resulting amplitude spectrum |𝑋𝑆𝐴(ℎ)| with ℎ = 1, … , 𝑁𝑠𝑝𝑟 2⁄ + 1 is used as an input for 

the neural network. For the sake of conciseness, in the following section the symbol 𝑋𝑖(ℎ) will 

be used for the ℎ-th harmonic of the shaft frequency of the synchronous average |𝑋𝑆𝐴(ℎ)| of 

the 𝑖-th signal in a dataset, while 𝐗𝑖 = {𝑋𝑖(1), … , 𝑋𝑖(𝑁𝑠𝑝𝑟 2⁄ + 1)} will represent the entire 

order spectrum for the same signal. 

 

Deep SVDD 

Healthy-only data is used to train a deep SVD for AD. The input to the network is the pre-

processed data, i.e., the order-spectra obtained after order-tracking and synchronous averaging. 

Such healthy-only training dataset 𝒳𝑡𝑟𝑎𝑖𝑛 = {𝐗1, … , 𝐗𝑁} is composed of 𝑁 training order-

spectra, each with the same length 𝑁𝑠𝑝𝑟 2 + 1⁄ . 
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The data is further processed by a neural network 𝜙(⋅; 𝒲) with three dense layers with trainable 

weights 𝒲 = {W(1), … , W(3)}, so that, for each input 𝐗𝑖 the network outputs: 

 𝐘𝑖 = 𝜙(𝐗𝑖; 𝒲) (2) 

with 𝐘𝑖 = {𝑌𝑖[1], 𝑌𝑖[2]}, chosen to be bi-dimensional purely for presentation purposes. 

The three subsequent dense layers have a decreasing number of neurons and specifically 50, 10 

and 2. These numbers are manually set and may vary for different input sizes, as they cannot 

be precisely configured within a neural network architecture. The layers do not have a bias term 

and a ReLU function is chosen for the first two layers, since it avoids a non-zero saturation. 

These two conditions are necessary to avoid overfitting of the healthy-only dataset, as explained 

in [9]. The last layer has no activation function, so that it can map the input to the entire ℝ2 

space. Therefore, the concise expression of eq. (2) is more explicitly represented as: 

 𝐘𝑖 = W(3) ReLU (W(2)ReLU(W(1)𝐗𝑖)) (3) 

The objective function to be minimised by an ADAM optimiser is: 

 𝐿 = min
𝑊

(
1

𝑛
∑‖𝜙(𝑥𝑖; 𝒲) − 𝐜‖2

𝑛

𝑖=1

+
𝜆

2
∑‖W(ℓ)‖

𝐹

2
3

ℓ=1

) (4) 

 

The first term is a Euclidean distance (squared) of the NN outputs 𝐘𝑖 from an arbitrary point 

𝐜 = {𝑐[1], 𝑐[2]}, which, according to [9] is chosen as the average output of the untrained 

network on the healthy dataset, i.e., the network with initialisation weights 𝒲𝑖: 

 𝐜 =
1

𝑛
∑ 𝜙(𝐗𝑖, 𝒲𝑖𝑛𝑖𝑡)

𝑁

𝑖=1

 (5) 

All other choices for 𝒄 would obtain similar results, however, [9] suggests that this choice of 𝒄 

converges faster and is more robust. This term aims at encouraging the network during training 

to project all the healthy 𝐗𝑖 into the same point 𝐜 of the bidimensional output space, thus 

representing the core of the one-class adaptation of NNs. 

The second term instead contains the Frobenius norm of the layer weights, i.e. if 𝑤𝑖,𝑗
(ℓ)

 is the 𝑖-

th row, 𝑗-th column term of the weight matrix W(ℓ) 

 ‖𝑊ℓ‖
𝐹

2
= ∑ ∑|𝑤𝑖,𝑗

(ℓ)
|

𝑗𝑖

2

 (6) 

This term limits the growth (in absolute terms) of the dense layer weights, which, together with 

the conditions imposed on the layer structure and the non-zero value of 𝑐𝑖, further limits the 

overfitting of the healthy-only data. The hyperparameter 𝜆 = 10−6 regulates the relative 

importance of the two components of the objective function. After training the deep one-class 

SVDD on healthy data, a radius 𝑅 is defined based on the 99th percentile (p99) of the squared 

Euclidean distance of the outputs 𝐘𝑖 from the centre 𝐜. This choice is based on cross-validation 

of many different percentile settings and can be use case dependent. In the given case (run-to-

failure test), false negatives (anomalies are present and not detected) are expected, as faults 

develop gradually with no clear failure onset. In other scenarios, where false negatives could 

have more severe consequences, the threshold would need to be adjusted accordingly to 

minimise the risk of missing critical anomalies. 

 𝑅 = √p99{‖𝐘𝑖 − 𝐜‖2, 𝑖 = 1, … , 𝑁} (7) 



PEER REVIEW 

 

21st Australian International Aerospace Congress, 24-26 March 2025, Melbourne & Avalon 

 

When testing a new signal with order-spectrum 𝐗𝑡𝑒𝑠𝑡 for anomalies, the signal is classified as 

faulty (𝐶𝑡𝑒𝑠𝑡 = 1) if the distance of the network’s output is larger than the radius 𝑅, and healthy 

(𝐶𝑡𝑒𝑠𝑡 = 0) otherwise: 

 𝐶𝑡𝑒𝑠𝑡 = {
1  if ‖𝜙(𝐗𝑡𝑒𝑠𝑡; 𝒲) − 𝑐‖ > 𝑅 
0 otherwise

 (8) 

 

SHAP 

In order to show which parts of the input are most relevant to the output computation of a NN, 

different feature importance techniques have been proposed in the literature. One of these 

approaches is SHAP [13]. When applied to a model such as a NN, this approach computes a 

SHAP value representing the relevance of each feature of the input to each feature of the output. 

The mathematics of SHAP are described in detail in [15]. 

 

Description of the data and its use in the AD method 

The approach proposed in this paper is applied to the gear wear dataset described in [15]. The 

dataset was obtained on the Spur Gearbox teat-rig of the UNSW Tribology and Condition 

Monitoring group. A pair of healthy but non-hardened module 2 gears with 19 (input) and 52 

(output) teeth were run for 3.25 ⋅ 106 cycles, with a vibration signal measured every 0.08 

million cycles. The data was pre-processed using 𝑁𝑠𝑝𝑟 = 100 samples per revolution for the 

angular interpolation, ensuring that 2 harmonics of the gearmesh frequency are included in the 

resulting Nyquist range. Aliasing is prevented with an anti-aliasing filter. The resulting order 

spectra, without the zero-frequency term, have a length of 51 harmonics. 

Tribological analysis of the surfaces conducted in parallel showed that tooth surface pitting 

started occurring after about 0.51 ⋅ 106 cycles (i.e. 15.7% of the total duration of the 

experiment). Considering that the surface mostly underwent initial smoothening through run-in 

during the first 15% of the test, the corresponding data (58 signals) were considered healthy and 

used to train the one-class network and initialise the value of 𝐜 (eq. (5)). The remaining 85% of 

the data (334 signals) is used for testing and SHAP-based interpretation. An overview of this 

entire process is visualised in Figure 1.  

 
Figure 1: Overview of the proposed trustable AD gear signal method. 
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Results 

In this section, the results of the AD and the SHAP analysis are presented. Since the arbitrary 

position of 𝐜 is set based on the output of the untrained network on the healthy dataset, the 

random initialisation of the layer weights in the training process strongly affects it. Therefore, 

two examples of training runs are shown in Figure 2, resulting in two different positions of 𝐜. 

The blue dots represent the output of the trained network for each of the training signals 

(healthy). The corresponding class boundary 𝑅 (99th percentile of the distance of the blue points 

from 𝐜) is shown as a green circle around 𝐜. Everything outside this circle is considered an 

anomaly, and only one of the training points is by definition classified as such. 

The output of the network for each of the testing signals is represented by a red dot. The 

darkness of the dot indicates the actual progression of the test. 

The results show how the method is effective in recognising a progressive drift of the data from 

the healthy condition, shown as a growing distance of the darker red points from the green 

circle. Only the very early faulty data is “misclassified” as non-anomalous, but this is not 

physically a problem in this situation, since there is no reason to distinguish between the last 

healthy signal and the first faulty one, given the gradual and relatively slow nature of the wear 

process. 

 

Figure 2: Deep SVDD test results for two different training runs with different random centre 

initialisation.  

To justify the need for this relatively sophisticated approach, it is important to demonstrate that 

a very simple parameters such as RMS cannot be used with similar accuracy. An RMS study 

over the entire dataset shows that while the RMS slightly increases throughout the test, it 

remains in the range classified as healthy for about half of the faulty samples. The difference 

between maximum RMS in healthy and faulty cases is also not extreme (about 10%). 

Figure 3 shows the SHAP values for each input feature (spectral harmonic) combined for the 

two feature outputs, i.e., the sum of the absolute SHAP values over the two output features. On 

the left these SHAP values are averaged over the training dataset, while on the right the average 

of the testing dataset is shown. Higher SHAP values for a specific shaft harmonic indicate a 

strong importance of that harmonic for the calculation of the two-dimensional output, and thus 

the classification of the signal. 

Looking at Figure 3 (left), it can be seen that the relevance of the different harmonics for the 

training dataset is quite evenly spread, meaning that the algorithm is able to find a recurrent 

spectral pattern over the entire available harmonic range. The first and second gearmesh 

harmonics (19 and 38 shaft orders) are relatively prominent. 

The results shown in Figure 3 (right) instead show a strong dominance of the first gearmesh 

harmonic (19th shaft order), which seems to be the main contributor to the AD performed by the 

Training 1 Training 2
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algorithm. This is particularly reassuring, since it is known that evenly distributed wear such as 

that occurring in this experimental case is mainly affecting the first few gearmesh harmonics, 

thus providing physical justification to the outcomes of the algorithm. 

 
Figure 3: Average SHAP values combined for both outputs for the training data (left) and 

testing data (right) 

To further confirm this finding, the average values of the inputs to the network, i.e., the average 

amplitudes of the shaft harmonics over the training and testing datasets are computed. It is clear 

that the 19th harmonic is the key differentiating fault symptom between the two classes. 

 

Conclusion 

In this paper a trustable gear AD framework is introduced. Starting with preprocessing the raw 

time domain vibration signals with order-tracking, synchronous averaging and Fourier 

transforming. This data is subsequently used to train the Deep-SVDD one class model with the 

first 15% of the run-to-failure data (considered ‘healthy’ data). The other 85% are used for 

testing the trained network (faulty data). The results show a high ability to show anomalies as 

the experiment progresses. Faults become more and more characteristic in the data, and this is 

picked up by the AD model well. Using SHAP it is shown that the model is focusing on 

physically meaningful signal components, such as the gearmesh harmonics, ensuring its 

effectiveness in detecting gear wear, offering significant potential for real-world applications in 

condition monitoring. 
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