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Abstract 
 

An aircraft undergoes both operational and non-operational phases throughout its lifecycle. 

During operational phases (i.e., when the aircraft is flying or the engine is running), 

operational flight data are recorded in modern cockpit instruments and monitoring systems. 

Conversely, limited information is captured during non-operational phases, resulting in an 

incomplete understanding of the Environmental and Operational Conditions (EOC) an aircraft 

is exposed to throughout its lifecycle. This paper addresses this challenge by proposing a data-

driven approach to pre-process and fuse the spatiotemporal flight and weather data from 

different sources to construct a representative profile of the aircraft’s EOC in a multivariate 

time series. The proposed framework employs a temporal resampling method and spatial 

alignment using the nearest neighbour method. Applying the framework using a Cessna 172S 

single-engine flight training aircraft’s flight data and operational profile, the initially 

combined data was incomplete due to partially missing parameters. Consequently, a further 

processing step involves estimating and imputing the missing parameters from the available 

data. In this work, temperature estimation was performed using the linear regression model 

and the expectation-maximization algorithm. By capturing the continuous sequences of 

environmental and operational parameters, the combined and processed data offers a 

comprehensive understanding of operational usage severity and aircraft microclimates. This 

foundational work paves the way for future research in predicting aircraft system health by 

integrating environmental and operational variations for enhanced prognostics and health 

management.  
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Introduction 
 

The exposure of an aircraft to varying environmental and operational conditions (EOC) 

during its lifecycle is critical for evaluating its performance and health. Military aircraft 

typically employ Operational Load Monitoring (OLM) and Structural Health Monitoring 

(SHM) sensors for this reason. A prime example is the Joint Strike Fighter F-35 program [1], 

where the fighter jet is widely instrumented to collect environmental and operational data for 

Prognostics and Health Management (PHM). However, the cost analysis for installing SHM 

sensors could be suboptimal [2] depending on the type of aircraft and mission profiles, 

thereby limiting the applicability of this approach especially for civil and general aviation. In 
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modern aircraft, flight data are collected in various aircraft systems. Thus, this limitation can 

be circumvented by analysing flight parameters from existing sources such as the flight data 

recorder [3], [4], quick access recorder [5], digital avionics instrument [6], [7] or 

communication systems [8], and ADS-B data [9]. In these previous works, data-driven 

approaches, including supervised learning, unsupervised learning, and deep learning models, 

have been applied to analyse the aircraft’s operational conditions using flight data for 

anomaly detection and PHM.   

 

While operational data are often recorded during flights, limited information is available for 

non-operational phases. This neglects the environmental impacts experienced during non-

operational phases, such as when aircraft are parked on the ground or undergoing 

maintenance. Structural and component degradation caused by factors such as corrosion, 

ultraviolet exposure, or thermal cycling can occur during these periods, as evidenced by the 

widespread corrosion in grounded fleets during the COVID-19 pandemic [10]. Moreover, 

Digital Twins are becoming increasingly explored for aircraft maintenance and operations 

optimisation through PHM and Integrated Systems Health Management (ISHM) [11], [12], 

[13], [14]. The combination of both operational and non-operational data relating to the 

aircraft’s environmental and operational conditions can help shape a more accurate digital 

representation of the physical aircraft’s health state. System-wise, Wang et al. [15] evaluated 

environmental factors collected from airport bases to predict the remaining useful life of pitot 

tubes, which are prone to damage due to environmental impact. For aircraft structures, 

Trueman et al. [16] proposed a Corrosion Prognostics and Health Management (CPHM) 

system that enables continuous monitoring using environmental sensors and witness plates 

installed in enclosed areas within the aircraft and in their respective ground stations. This 

approach ensures a holistic coverage of environmental conditions that can contribute to 

significant long-term structural damages throughout the aircraft’s service life. Nevertheless, 

such a system presents inherent logistical, certification, and technical challenges to be 

deployed in the field, especially in civil aircraft.   

 

This paper aims to address the gaps highlighted by proposing a novel framework that (i) 

constructs a representative Environmental and Operational Conditions (EOC) profile that 

accounts for both operational and non-operational phases of an aircraft's lifecycle, (ii) without 

additional monitoring sensors, (iii) by focusing on data pre-processing. This framework is 

demonstrated in the context of analysing the EOC that affects structural corrosion on a Cessna 

172S general aviation aircraft.  

 

Data Fusion Framework and Methodology 
 

In this paper, the flight data source comes from the Cessna 172S Garmin G1000 system. The 

G1000 system’s main function is to serve as the electronic flight instrument system, providing 

pilots with real-time information on the flight path, the aircraft’s systems, and the 

environment. Nevertheless, the system also maintains logs of each engine start which can be 

downloaded from the memory card. The recorded data acquisition rate is 1 Hz, i.e. data 

is logged every second. For more background on the nature of these data, Fala et al. [17] 

described the G1000 dataset as they applied machine learning models to these data for 

unsupervised flight phase identification.  

 

Relevant environmental variables are obtained from local weather stations of the aircraft’s 

bases and frequent flight destinations. In this paper, the authors collected weather information 

from the Australian Bureau of Meteorology’s website [18] from three selected weather 
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stations: Bendigo, Moorabbin, and Point Cook in Victoria, Australia. The weather data are 

updated roughly every 30 minutes, but the frequency could vary. 

 

Fig. 1 illustrates the data fusion pre-processing framework with the parameters extracted from 

each data source and their respective frequencies. Since both data sources are represented as 

multivariate time-series, the first step would be temporal alignment of the two datasets. 

Giving more importance to operational variation, a common standardised frequency is set at 

 Hz (i.e. 60 seconds). Time-series resampling is a common pre-processing technique to deal 

with large flight data with high frequencies, as described in [19], [20]. Therefore, in this work, 

time-series resampling technique is also adopted to transform the flight data from every 60 

seconds to one data point by down-sampling, while more data points are interpolated into the 

original weather data by up-sampling. Resampling also ensures that the multivariate time-

series data runs continuously at a standardised frequency over the data period, compensating 

for erroneous data due to missing or duplicate values. Subsequently, spatial alignment is 

performed using the k-Nearest Neighbours (k-NN) algorithm. Given that there are only three 

weather stations spaced roughly equally apart, the 1-nearest neighbour approach (𝑘 =1) is 

employed. In this method, the algorithm identifies the closest point from the flight data to 

weather data, at each date-time index, using the Euclidean distance. By setting 𝑘 =1, only the 

nearest data point is selected for alignment, which simplifies the process and ensures 

efficiency. This approach provides accurate spatial alignment with minimal computational 

overhead, as only the single closest neighbour is considered.  

 

Flight data is matched with the weather data from the nearest station at each date-time index 

to derive the combined environmental and operational data. The initial combined EOC data 

will have missing values in the flight data during non-operational phases. Operational 

variables such as Indicated Airspeed (IAS), accelerations, pitch and roll movements, can be 

assumed as zero. Geographical information would be based on the last available data as we 

assume the aircraft to be stationary during its non-operational phase. Environmental variables, 

such as Outside Air Temperature (OAT) would have to be estimated from other known data. 

In this instance, OAT is estimated by employing the relationship between the temperature 

from the weather data and the OAT from the aircraft’s OAT sensor when IAS = 0 (i.e. aircraft 

is powered up on ground and stationary). Detailed results are shown and discussed in the next 

section.  

 

Fig. 1:  Data fusion framework 

 
Case Study and Results 
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The case study for applying the proposed framework uses approximately 6 months of data 

(December 2023 to May 2024) collected from the respective weather stations and a selected 

operational Cessna 172S typically used for flight training between Bendigo, Point Cook, and 

Moorabbin. The raw flight data contains 614,010 rows of parameters across this period. A few 

down-sampling methods were attempted, including 1) retaining the first value of each 

minute’s data, 2) obtaining the median of each minute of data, and 3) obtaining the median of 

data smoothed over a rolling window of 30 data points (i.e. 30 seconds). Each method was 

benchmarked against the raw data distribution using the Kolmogorov-Smirnov test (K-S test) 

and the Anderson-Darling test (AD test). The K-S test is a statistical method to compare the 

distribution of two datasets for similarity. Similarly, the AD test also checks for similarity in 

distributions between two datasets, but puts more weight on the extreme tails of the 

distributions. Fig. 2 shows the p-value of the statistical tests between different down-sampling 

methods. Assuming a standard 95% confidence level, the null hypothesis that the samples 

come from the same underlying distribution can be rejected where p-value ≤ 0.05 (highlighted 

in green in Fig. 2). Based on the results of the statistical tests, method 1 is adopted for 

latitude, longitude, IAS, accelerations, pitch, and roll; while method 3 is adopted for altitude 

above mean sea level (AltMSL), OAT, and pressure. Fig. 3 shows selected resampled and raw 

flight parameters scatter plotted against time for comparisons.   

 

Fig. 2:  Flight Data Resampling Results 
Down-sampling 

methods
Test Latitude           Longitude           AltMSL(ft) IAS(kt)             OAT(C)              

Pressure

(inHg)     
NormAc(G)           LatAc(G)            Pitch               Roll                

A-D 0.25 0.25 0.0376 0.0762 0.25 0.25 0.0552 0.25 0.25 0.088

K-S 0.137 0.493 0.0269 0.198 0.962 1 0.339 0.835 0.534 0.141

A-D 0.25 0.25 0.125 0.001 0.25 0.25 0.001 0.001 0.001 0.001

K-S 0.171 0.0576 0.01 0 0.985 1 0 0 0 0

A-D 0.25 0.25 0.0531 0.121 0.25 0.25 0.001 0.001 0.112 0.001

K-S 0.167 0.552 0.0388 0.208 0.984 1 0 0 0.383 0.301

Selected method for 

each parameter
1 1 3 1 3 3 1 1 1 1

A-D 0.25 0.25 0.071 0.1 0.25 0.25 0.055 0.25 0.25 0.088

K-S 0.16 0.53 0.05 0.23 0.94 1 0.34 0.83 0.53 0.14

2) Median

1) Retaining first 

value

3) Median of 

smoothed data

Combined
 

 

Weather data is interpolated by assuming linearity between the approximate 30-minute 

intervals. The authors note that this is a limitation of the methodology adopted because linear 

interpolation fails to capture the variances and sporadic nature of the weather. However, given 

that the objective of the model is to analyse the impact of EOC on long-term structural 

degradation such as corrosion, it is reasonable to assume that the minute variations in 

environmental conditions would have a less significant effect than the interactions during 

operational phases. Therefore, while linear interpolation may miss short-term fluctuations, it 

remains sufficient for modelling the long-term environmental exposure relevant to structural 

health monitoring (SHM). 

 

Fig. 3: Resampled and raw (a) AltMSL, (b) IAS, and (c) OAT plotted against time (from left to 

right) 
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Subsequently, as discussed earlier, the OAT in the combined EOC dataset contains missing 

values during non-operational phases. A strong linear correlation can be observed between the 

OAT and the air temperature obtained from the weather stations when the aircraft is on the 

ground (i.e. IAS = 0) based on the Pearson correlation coefficient = 0.92.  Hence, to shape a 

complete picture of the historical representation of the temperature around the aircraft, a 

Linear Regression (LR) model coupled with an Expectation-Maximization (E-M) algorithm is 

used to estimate the missing values from known parameters (Fig. 4). It should be noted that 

this method adopted to impute and estimate the missing values is incumbent on the strong 

linear correlation between the available data, which may not always hold especially for 

variables with limited operational data, such as the relative humidity and wind speed. These 

will need additional computations that are not discussed in the context of this paper.  

 

In the Expectation step, the non-missing values during the operational phase are used to 

initialise the algorithm, thereby retaining actual OAT values, before filling the missing values 

with the trained LR model. Subsequently, all values are refitted into the LR model to refine 

the values where data was previously missing. As depicted in the boxplots in Fig. 4, it can be 

observed that the E-M algorithm brings the overall median, minimum and maximum values 

closer to that of the original parameter.  

 

Fig. 4: Expectation-Maximisation process explained 

 
 

Since there is no ground truth to assess the accuracy of the LR model and E-M algorithm, the 

models were applied to estimate the OAT during the operational phase (i.e. training dataset) 

and compared with the actual OAT values for validation. Results showed that the E-M 

algorithm improves the estimation of the missing parameters.  

 

Table 1: Error metrics table of the LR model only and LR model with E-M algorithm tested on 

the training dataset 

Error metrics LR model only LR model with E-M algorithm 

Mean Absolute Error (MAE) 4.74 3.49 

Root Mean Squared Error (RMSE) 6.01 4.27 
 

Potential Application Areas 
 

The proposed spatiotemporal data fusion technique completes the understanding of both 

operational and non-operational phases an aircraft experiences throughout its service life, 

thereby improving aircraft lifecycle management processes. Moreover, the combination of 

spatial information and time-series data can feed an aircraft digital twin to represent the 

physical aircraft in its dynamic operating environment virtually. Such an approach could 

potentially be applied not only to PHM and SHM as discussed in the earlier sections, but also 

support other areas of aviation research including, but not limited to, flight path optimisation 

for extreme weather avoidance, fuel efficiency and emissions reduction.  
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Conclusion 
 

This paper introduces a spatiotemporal data fusion method to address the gap in capturing the 

varying EOC throughout the aircraft’s lifecycle. By integrating flight data from the Garmin 

G1000 system with weather data, the presented approach constructs a comprehensive EOC 

profile for a Cessna 172S aircraft without additional onboard monitoring sensors. Temporal 

resampling and spatial k-nearest-neighbour methods ensure data alignment, while the 

complete representation of EOC enables more holistic health and usage monitoring. This 

paves the way for future works to incorporate the combined EOC data with data-driven 

predictive models to develop an aircraft digital twin for structural prognostics and health 

management.  
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