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Abstract 

Detecting peaks in vibration spectra can provide early indications of potential faults or 

anomalies, facilitating pre-emptive maintenance to prevent costly breakdowns. It can also be 

used in combination with other methods. Existing methods for peak detection encounter 

challenges stemming from noisy data and an unknown number of expected peaks. In response, 

this paper proposes a Region-based Convolutional Neural Network for blind peak detection. In 

this instance, the model is trained on complex simulated data, with the potential for future 

adaptation to incorporate real data. This flexibility allows for a dynamic trade-off between data 

availability and machine-specificity. The proposed method comprises a classification part and 

a regression part. Initially, regions are classified as peak or no-peak, followed by the regression 

part predicting the location and size of the peak for the identified region. Overall, this 

methodology identifies peaks in spectra without necessitating prior knowledge about the signal 

or machine kinematics. The performance of the peak detection model is tested on real gearbox 

data. By eliminating the need for a priori knowledge and ensuring rapid execution, the method 

emerges as an initial solution for peak detection, contributing to the enhancement of signal 

analysis methodologies. 
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Introduction 

The importance of spectral peak detection has been recognised as a key method for vibration-

based monitoring of mechanical equipment, particularly in industries where the components are 

continuously moving in a predefined manner, such as the rotation of wind turbines and 

generators [1]. These spectral peaks correspond to periodicities within the rotating components, 

and their amplitude and frequency can indicate specific faults. Although they can be used 

directly for monitoring, by following the amplitude or the change in the shape of the peak, 

information can be extracted for other metrics or methodologies. For example, the estimation 

of instantaneous angular speed (IAS) in a multi-order probabilistic approach [2]. 

Many methods exist for the identification of harmonics in a signal. The most known and 

widely used are MUSIC [3] and ESPRIT [4], adapted from direction of arrival (DOA) 

applications, to finding harmonics in time series data. The main concept for DOA and peak 

detection is common, and it is to retrieve harmonics from signals. The drawback of MUSIC is 

that the number of harmonics must be pre-defined to have accurate results, and noise must be 

limited. ESPRIT reduced the issue of noise in signals with low signal-to-noise ratios (SNR). 

Nevertheless, until today, issues still arise caused by noise. Hawarri et al. have proposed a 

method to further reduce the noise issue by standardising the spectral data [5]. Although this 

work was a step forward, issues remain when the machine is operating in a transient regime. 

Machine learning has been explored to improve Direction of Arrival (DOA) or peak 

detection capabilities [6]. A comprehensive review of deep learning approaches for DOA 

problems is available in [7]. While deep learning holds promise for improving predictive 
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accuracy, a major limitation is its "black box" nature, where results are often not easily 

interpretable. This lack of transparency can be a deterrent for safety-critical applications. 

Nevertheless, certain machine learning models offer the potential for greater interpretability, 

making them more suitable for such applications. 

Region Proposal Networks (RPN), introduced by Ren et al. in their Faster RCNN work [8], 

stood out as both highly effective in object detection and relatively interpretable, offering 

insights into its decision-making process. In fact, Faster RCNN has seen successful application 

in peak detection across various other fields [9, 10, 11, 12].  

Although RCNNs have been effectively used for peak detection in general, they are yet to 

be applied to vibration spectra. Given the unique challenges of vibration data, such as low 

signal-to-noise ratios, non-Gaussian noise, and an unknown number of peaks, traditional 

methods often struggle with accurate peak detection. This work aims to address these challenges 

by developing a harmonic detection model tailored to vibration spectra, ignoring for the 

moment the resonances and the modes of the system.  

The following sections detail the model development methodology, with the third section 

presenting the training results and the accuracy of the model on raw spectral data from offshore 

wind turbines. The conclusions are provided in the final section. 

Methodology – Model Structure  

As for the most common case of RCNN-based object recognition within images, labelling 

of an input sample (in this study a spectrum) is based on the definition of anchors. Anchors 

consist of a set of predefined rectangular boxes with various sizes and aspect ratios. These boxes 

are slid over the image at regular intervals in both directions, in order to determine if an object 

is present in that area and its size and location relative to the anchor itself. This labelling usually 

consists of 5 elements: the presence of an object, x and y location with respect to the centre of 

the anchor, and width and height as a percentage of the anchor’s corresponding dimensions. 

This labelling is then used to classify the presence and location of objects starting from a CNN-

preprocessed version of the image itself. Each pixel of such a pre-processed image, containing 

many channels, is then fed to a series of dense layers which outputs the 5 elements required for 

the classification (object or not) and regression (location and size) tasks. 

This study borrows the architecture of Faster RCNN and applies it to spectra for the 

detection, location and sizing of peaks corresponding to periodic or almost-periodic forcing 

function harmonics in a mechanical signal. In other works using RCNNs for peak detection [9, 

10, 11, 12], images of spectra or spectrograms are used as inputs to the model, in order to allow 

using the standard RCNN algorithm. However, this study is based on the more justifiable and 

efficient choice of using the actual 1D vectors of the signal’s spectral log-amplitude as inputs. 

For the details of the functioning of traditional 2D RCNNs, the reader is referred to Ref. [8]. 

The inputs to the network used in this work are one-dimensional log-amplitude spectra. Each 

log-amplitude spectrum 𝐗𝑖 is composed of a series of real values 𝑋𝑖[𝑛] with 𝑛 = 0, … , 𝐿 − 1, 

each corresponding to the logarithm of the spectral amplitude at the normalised frequency 𝑛 =
𝑓[𝑛] Δ𝑓⁄  where Δ𝑓 is the frequency resolution of the spectrum and 𝐿 = 2048 frequency points. 

The spectra are obtained by fast-Fourier transform (FFT) of time-domain signals 𝑥𝑖[𝑘]. 
The network structure is shown in Figure 1. The network is composed of a U-Net (in red), 

and two fully-connected networks (object detection and object location). The U-Net takes as 

input the spectrum and applies a series of convolutional-max pooling layer pairs, each with 𝑁 =
64 filters, kernel size 𝐾 = 13 (except the first layer which has 𝐾 = 17) and pool size 𝑃 = 2. 

As shown in [13], each convolutional layer is equivalent to a liftering operation (filtering in the 

cepstrum domain), which for each filter (or lifter) allows only certain spectral patterns to be 

retained. The max-pooling just allows each subsequent convolutional layer to operate over a 

downsampled spectrum (coarser frequency resolution), i.e., enabling the filters (kernels) to span 

over larger bandwidths. In line with the U-Net concept, the outputs of all convolutional layers 
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are retained to increase the capacity of the network to focus on spectral patterns of different 

scale. These are upsampled to a uniform dimension and corresponding frequency resolution 

(matching the original spectrum) and concatenated along the channel dimensions (i.e., stacked). 

The output of such U-Net is therefore a series of 256 pre-processed versions of the original 

spectrum, each with a potentially different combination of liftering operations applied to it. 

These are fed to the almost-identical object detection and object location/sizing networks. 

The first layer of each network is equivalent to a dense layer, even if it’s implemented as a 

convolutional layer with kernel size 𝐾 = 1 and 𝑁 = 64 filters. This means that the same 64-

neuron dense layer is applied to each spectral point independently, i.e., for each frequency, all 

the differently liftered versions of the corresponding spectral amplitude are combined linearly 

into 64 output values and then saturated using a ReLU activation function. The output of this 

first dense layer is then fed to a second dense layer, again implemented as a convolutional layer 

with kernel size 𝐾 = 1. This last layer is different for the two networks: in the object detection 

network it has 𝑁 = 4 filters/neurons and a sigmoid activation function, while in the object 

location/sizing network it has 𝑁 = 8 filters/neurons, still with a sigmoid function. 

 
Figure 1. Structure of the network 

The dimensionality of the outputs is determined by the input labelling process, following the 

standard RCNN approach. The labelling involves 𝐴 = 4 anchors of varying sizes (5, 11, 22, 

and 45 frequency points). Each anchor is slid along the frequency axis, centred at each 

frequency point. For each frequency 𝑓[𝑛] and anchor 𝑎, if the maximum intersection-over-

union (IoU) between the peaks and the anchor exceeds 0.7, the 𝑛-th frequency component of 

the spectrum 𝑋𝑖[𝑛] is labelled as containing a peak for anchor 𝑎 (i.e., 𝑦𝑖[𝑛, 𝑎] = 1). When this 

condition is met, the location and size of the peak relative to the anchor 𝑎 centred in 𝑓[𝑛] are 

recorded as ℓ𝑖[𝑛, 𝑎] and 𝑠𝑖[𝑛, 𝑎], respectively. 

The network is then trained with input spectra 𝑋𝑖[𝑛] and labels 𝑦𝑖[𝑛, 𝑎], ℓ𝑖[𝑛, 𝑎] and 𝑠𝑖[𝑛, 𝑎] 
with 𝑛 = 0, … , 𝐿 − 1 and 𝑎 = 0, … , 𝐴 − 1. The number of anchors is reflected in the 

dimensionality of the network’s outputs: the object-detection network outputs 𝑦̂𝑖[𝑛, 𝑎] with 4 

channels (𝑎 = 0, … 3), and the object-location/sizing outputs ℓ̂𝑖[𝑛, 𝑎] and 𝑠̂𝑖[𝑛, 𝑎], i.e., a total 

of 2 ⋅ 4 = 8 channels. The sigmoid activation at the end of the object-detection network is 

justified by the need to have a 0 < 𝑦̂𝑖[𝑛, 𝑎] < 1 to represent the likelihood of having a peak in 

the corresponding anchor (classification). Despite the regression nature of the object 

location/sizing network, both location and size are bound by the anchor maximum dimension, 

thus encouraging the inclusion of a sigmoid function. The network is trained using a loss 

function which combines the three different outputs for each anchor: 

ℒ = ∑ ∑ ∑ ℒ𝑖
(𝑦)

[𝑛, 𝑎] + 𝑏ℒ𝑖
(ℓ)[𝑛, 𝑎] + 𝑏ℒ𝑖

(𝑠)[𝑛, 𝑎]

𝐴−1

𝑛=0

𝑁−1

𝑛=0

𝐼−1

𝑖=0

 . (1) 

A binary cross-entropy component is used for the object likelihood output 𝑦̂𝑖[𝑛, 𝑎] 
(classification component). The constant 𝑏 was tuned for optimal accuracy, 
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ℒ𝑖
(𝑦)

[𝑛, 𝑎] = −(𝑦𝑖[𝑛, 𝑎] log(𝑦̂𝑖[𝑛, 𝑎]) + 𝑦̂𝑖[𝑛, 𝑎] log(𝑦𝑖[𝑛, 𝑎])). (2) 

A modified mean-squared error is used for the location ℓ̂𝑖[𝑛, 𝑎] and sizing 𝑠̂𝑖[𝑛, 𝑎] of the peak 

ℒ𝑖
(ℓ)[𝑛, 𝑎] = 𝑦𝑖[𝑛, 𝑎] ⋅ |ℓ̂𝑖[𝑛, 𝑎] − ℓ𝑖[𝑛, 𝑎]|

2
, 

ℒ𝑖
(𝑠)[𝑛, 𝑎] = 𝑦𝑖[𝑛, 𝑎] ⋅ |𝑠̂𝑖[𝑛, 𝑎] − 𝑠𝑖[𝑛, 𝑎]|2. 

(3) 

In this case, the term 𝑦𝑖[𝑛, 𝑎] ensures that only location and size of actual peaks are considered. 

As for all RCNNs, the classification/regression is followed by a non-maximum suppression 

(NMS) of adjacent peaks, which simply eliminates all identified peaks with a reciprocal IoU 

greater than 20%, except for the peak showing the maximum object-detection score 𝑦𝑖[𝑛, 𝑎]. 

Training and Experimental Results 

The training of the algorithm is done purely on simulated data, to test the capability of this 

approach to work in data-scarce environments and still perform well over experimental signals. 

A total of 1500 numerical signals 𝐱𝑖 were created in the time domain, and then transformed into 

log-amplitude spectra 𝑋𝑖[𝑛] (each of length 𝐿 = 2048 frequency points) using an FFT. Each 

signal 𝑥𝑖[𝑘] is composed as an additive combination of variable-speed harmonic components 

and noise 𝜈𝑖[𝑘], all convolved with a multi-degree-of-freedom impulse response ℎ𝑖[𝑘]: 

𝑥𝑖[𝑘] = ℎ𝑖[𝑘] ∗ (
1

𝑚𝑖
∑ 𝐴𝑖,𝑐sin(2𝜋𝜃𝑖,𝑐[𝑘])

𝐶𝑖

ℎ=0

+ 𝜈𝑖[𝑘]) (4) 

The angular quantities 𝜃𝑖,𝑐[𝑘] are obtained by numerical integration of corresponding angular 

speeds 𝜔𝑖,𝑐[𝑘], which are in turn generated independently for each signal 𝑖 and component 𝑐 

using a smoothed random walk. The real-valued amplitudes 𝐴𝑖,𝑐 ∈ [0.45, 1.4] and the integer 

number of harmonics 5 ≤ 𝐶𝑖 ≤ 40 are generated using independent distributions. The 

combination of harmonics is then normalized with respect to its maximum value 𝑚𝑖 and white 

noise 𝜈𝑖[𝑘] is added with an average signal-to-noise ratio 𝑆𝑁𝑅 =  25, varying for each signal. 

The convolution with the impulse response ℎ𝑖[𝑘] is actually obtained in the frequency domain 

using a corresponding Frequency Response Function (FRF) 𝐻𝑖[𝑛], generated for each signal 

independently with a number of random poles and zeros between 1 and 4. The frequency 

location of poles and zeros and the damping ratios are randomly and independently generated 

for each signal with the former between 10% and 90% of the available frequency range and the 

latter between 0.25% and 2%. As mentioned earlier, the real-valued logarithm FFT of 𝑥[𝑡] is 

used for training the model. 

The data are split into training (90%) and test (10%) data sets. The results for the peak-

detection component of the network (object detection) are presented in Table 2.  

Table 2: Results of the object detection component of the network 

Data set Precision Recall F1-Score 

Training 0.916 0.819 0.865 

Testing 0.918 0.823 0.868 

It can be seen that for both datasets there is a good precision (false peaks are <10%), while 

the recall is still relatively low (~18% of the peaks are not identified). This could be attributed 

to the fact that the threshold for detections in the NMS is quite high, but it is also exacerbated 

by the relatively low SNR experienced in the vicinity of minor peaks. Further work could 

analyse the effect of NMS and relative peak/background amplitude on these metrics. 

The results for the peak location/sizing part are shown in Table 3, which contains the RMSE 

of the location and size of correctly identified peaks. As can be seen, the location is quite well 

estimated, with an RMSE error about twice the frequency resolution. The estimated peak widths 
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are less accurate with an RMSE>4 frequency points. This is very likely related to the local SNR 

of each peak, which would strongly affect the “perceived” width of the peaks. The importance 

of this error is also likely dependent on the spectral resolution and the actual application. 

Table 3: Results for object detection 

RMSE for Location (points) Size (points) 

Training set 1.89 4.01 

Testing set 2.11 4.27 

For a qualitative, but more intuitive understanding of the performance of this approach, 

especially in terms of detection and sizing of the most relevant peaks in the spectrum, real 

accelerometer data from an offshore wind farm is utilised. The two test signals are selected 

randomly from different turbines across the same wind farm, one being in a quasi-stationary 

case (small IAS variation) and one undergoing a speed transient. 

The model is applied directly to the real-valued logarithmic FFT spectra of experimental 

data after being trained with the numerical signals discussed before. An object score threshold 

of 45% is employed for NMS, allowing the inclusion of less certain detections, without 

compromising the precision.  

The variability in the frequency width of harmonics across operating conditions and along 

the spectral axis can lead to anchors being either undersized or oversized for specific peaks, or 

to the need to use a large number of anchors. To mitigate this, multiple resolutions of the 

spectrum can be analysed by the model. This approach avoids increasing the number of anchors 

or extending the peak width variability in the training signals. This would result in unnecessary 

complexity, and more elaborate training datasets, potentially compromising detection 

performance. For this study, results are obtained by applying the methodology with the base 

resolution Δ𝑓 first, and then again on two halves of the spectrum with a resolution Δ𝑓 2⁄ (so that 

the length was always 2048 points). Duplicates were removed based on IoU.  

Figure 2 and Figure 3 present the results obtained from wind turbine data. The peaks detected 

by the network are marked with a red "X", and the red shaded boxes show the network’s 

                  
Figure 2:  Results for quasi-stationary case (frequency is normalised) 

  
Figure 3:  Results for transient case (frequency is normalised) 
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for the peak width. Due to its lower variation in speed, the first example (Figure 2) shows 

narrow peaks compared to the second (Figure 3). In both cases, most of the visually 

distinguishable harmonics are correctly identified by the model. In the stationary case, it is 

possible to see two peaks that are undetected, one at a very low frequency and one close to the 

maximum frequency of analysis. The peak locations and widths tend to be accurately captured, 

especially in the stationary case where they are well separated. 

Conclusions 

The proposed peak detection method introduces a novel approach for applying RCNNs to 

vibration spectra analysis, advancing the automation of peak detection without needing prior 

knowledge of spectral characteristics. This flexible model, trained initially on simulated data, 

can be used in real-world conditions as shown in a real wind farm case. Despite some margin 

for improvement, the model's successful detection of the dominant harmonics demonstrates its 

practical applicability for vibration analysis and condition monitoring tasks. 
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