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1. Summary of Findings 
We employed an autoencoder neural network, optimized for multiplexed time series compression and 
reconstruction, to analyze the raw data. By examining the latent space of the autoencoder, we uncovered 
differences between sequence points and characteristic frequencies across the system's test. Notably, the 
variations in the latent space groupings reflected distinct behavioral patterns within the system. Through 
comparisons of characteristic frequencies in these groups, we identified and defined a spectra shift, which we 
propose is indicative of the associated fault observed during testing. 

Each shift in the latent space corresponds to an underlying change in characteristic frequencies detected by the 
model, attributable to system changes. By identifying the most significant statistical change in the spectra, 
based on grouped areas of the latent space, we pinpointed the earliest statistically detectable change in the 
data. Our key findings are summarized in the following table. 

Table 1: Summary of Findings 

# Detection & Trending Data file name/number Comments 
1 Detection of behavioral shift into first 

statistically relevant group (group 3) 
Day007_20240409_115526_100%TT First sign of 

behavioral shift 
2 Detection of sustained shift into statistically 

relevant group (group 3) 
Day011_20240424_101221_100%TT 
 

Sustained 
behavioral shift 

3 Detection of behavioral shift into second 
statistically relevant group (Group 5) 

Day014_20240507_133354_126%TT First sign of 
behavioral shift 

4 Confirmed trend of accelerated fault Day014_20240507_133354_126%TT Sustained 
behavioral shift 

 

2. Description of Analysis Methods 
We propose a data-driven approach, leveraging state-of-the-art neural network techniques, to analyze 
statistically significant information in the dataset related to fatigue and crack propagation in the gear box 
housing. Our method combines behavioral analysis with clustering to identify shifts in system behavior over 



time. These shifts result from events like crack propagation, which alter the system's characteristic geometry, 
mass, and mechanics from one cycle to another. 

To capture these changes, we utilize an autoencoder to encode the characteristic frequencies of sequences of 
readings. This allows us to examine how these frequencies change over time and pinpoint times where there are 
larger shifts in these frequencies. 

To train a behavioral model for this data challenge, we considered two key pieces of information: the sequence 
length representative of a behavior and the removal of gear-related frequencies. We evaluated the sample rate 
and dataset length to determine an optimal sequence length. Data was sampled at 65573.77049180328 Hz in 30 
second bursts every 4 minutes.  This gives us 1,967,213 points per file. Since the data was not continuous, we 
chose a sequence length (85531 points) that is a multiple of the total points in each file and larger than the 
sample rate. This enables us to relate behaviors to a period greater than one second and gives us 23 sequences 
per file. 

To eliminate gear-related characteristics, we applied the Fourier Transform to break down sequences into their 
characteristic frequencies. We then removed frequencies above the mean magnitude, which eliminated gear 
mesh frequencies and larger magnitude frequencies introduced by our sequence length selection. This step 
isolates the frequencies most likely to exhibit behaviors related to changes in the gear box housing. 

The augmented frequency domain data is used to train the autoencoder, which compresses and decompresses 
the frequency information to learn a latent space representation. This latent space is the core of our analysis, 
where points with similar characteristic frequencies at similar magnitudes are closer together. The latent space is 
defined by data similarity in the context of the problem, enabling us to identify patterns and shifts in system 
behavior. 

From this latent space we will identify characteristic frequency shifts. Then identify files associated with 
statistically significant shifts in those characteristic frequencies. These statistical shifts will be considered our early 
detection method. 

3. Key Fault Characteristics for Early 
Detection  

In our test case, we aim to define the P-value of a P-F 
Curve, which represents the point before the failure 
state F, allowing us to intervene with maintenance 
and prevent catastrophic incidents. Since our case 
involves fatigue, we must examine the causal effects 
of fatigue on the system. Specifically, we are 
interested in the behavioral shifts that occur as a 
system fatigues. The vibrational behavior of a system 
changes as it fatigues, and our latent space analysis 
enables us to detect these subtle shifts in behavior.  

The latent space representation learned from the model (Figure 2) reveals at least two distinct groups. The two 
we will focus on at first will be points that occur below x=-1 and points that occur above x=-1. The coloration of 
this plot shows that the behaviors learned by the model are aligned with the time domain, despite the model 
not receiving any temporal information during training. This indicates that the behaviors learned are progressive 
and continuous along the time domain, as shown by the progression of color from purple (early points in time) 
to gold (later points in time). 

Figure 1: Notional PF Curve. 



A notable gap between x=-1 and x=-2 
(Figure 2 left, red line), containing only a 
few points, suggests a rapid shift in 
behavior in the system. Given that 
points in proximity represent similar 
behaviors, this gap likely indicates the 
functional failure event. This also 
suggests that shifts prior to this point 
are smaller and more indicative of 
fatigue leading to this rapid shift. We 
define the area between -1>=x>=-2 as 
our transitional event. 

To analyze different areas of the latent 
space, we divide the points into groups, 
based location x<-1 and x>-1. We then 
compare the characteristic frequencies of 
these points by averaging the magnitude 
at each frequency for all points in a 
group. By subtracting the averaged 
spectra of one group from the other 
(Figure 3), we can identify differences in 
frequency behavior. Our results show 
that the characteristic change between 
the two groups occurs in the frequency 
range of 13kHz to 23kHz. This is evident 
in Figure 3, which we will use as a 
reference to compare groups from the 
latent space. 

This difference represents the major distinction in characteristic frequency behavior between the beginning and 
end of the data. We will focus on this frequency range as an area of interest in further analysis. Notably, our 
analysis of the 100% load file indicates that the largest sustained transitional point occurs on 
Day014_20240507_091907_100%TT.  

To validate our findings from the 100% load data, we applied the same analysis process to the 125% raw data 
(Figure 2 right, red line). Our results show that the model successfully segregated this data into two main 
groups, below y=1 and above y=1, like the 100% load data. Furthermore, the temporal relationship of the data is 
preserved, with behavioral shifts occurring progressively from the first file to the last data point. 

The Fourier plot for the 125% data reveals the same relationship at the same frequencies as the 100% load data, 
providing further evidence of the consistency of our findings. Notably, a sustained behavioral shift is observed 
starting at file Day014_20240507_133354_126%TT, which corroborates our previous conclusion that the event 
occurred on Day 14. This validation exercise demonstrates that the observed behaviors are not dependent on 
the load applied to the box, increasing our confidence in the accuracy of our results. 

4. Fault Progression Trending Curve 
To analyze the progression of fatigue during the test, we will utilize the difference of average spectra plot to 
identify differences between points from specific areas on the latent space plot. This involves selecting two x, y 

Figure 2: Annotated Latent Spaces. 100% load (left) and >100% load (right). 

Figure 3: Difference in average characteristic frequencies, early data point vs later 
data points. 



coordinates and sampling 100 examples 
nearest to those points in the latent space 
to plot their average spectra difference. 

The boxplots in Figure 4 illustrates the 
difference in average spectra between 
13kHz and 23kHz when comparing spectra 
between the numbered point in the latent 
space (Figure 2) and the baseline point (the 
first 100 points in the data). The plots 
reveals that the initial groups (1 and 2) 
exhibit minimal difference, with only a 
small deviation in median. However, as we 
progress to group 3, we observe a 
significant increase in noise, indicated by the wider whiskers on the box, despite a reduction in median 
deviation. Groups 4 and 5 display both increased noise and a growing deviation from the median. 

Notably, the behavior of the groups in the 100% load data, Figure 4 (left), is consistent with the 125% load data, 
as shown in Figure 4 (right). The sustained deviation from the baseline begins at group 3, which corresponds to 
groups 3 and 4 in the 100% data. This validation reinforces our understanding of the fault progression trend. 

 

Figure 5: Colorized progression of identified groups in captured readings of sensor RF-2 

Our analysis reveals that the earliest indications of behavioral group 3 and 4 can be detected as early as Day 7, 
specifically in file 'Day007_20240409_115526_100%TT'. This behavior is sustained across multiple files on Day 
11, including 'Day011_20240424_101221_100%TT', 'Day011_20240424_102004_100%TT', 
'Day011_20240424_113340_101%TT', and 'Day011_20240424_142333_100%TT'. Notably, the machine learning 
model detects subtle differences in behavior even earlier, as evidenced by the points shifting from the baseline 
to group 1 in the latent space. 

While the shift from baseline to group 1 indicates a distinct difference, we cannot conclusively attribute it to a 
specific mechanism that is not inherent to the system's operation. However, using statistical box plotting and 
average spectra comparison, we can confidently assert that the differences between the baseline and groups 3 
and above are due to a shift in the box's response in the 13kHz to 23kHz range. This forms the basis of our 
earliest detection. 

By applying the P to F interval analogy, we estimate that the earliest possible detection occurs on Day 7, while 
the functional failure point is reached on Day 14. Our analysis demonstrates the effectiveness of machine 
learning and statistical methods in detecting early signs of failure, enabling proactive maintenance, and 
preventing catastrophic incidents. 

Figure 4: Statistical trending of differences from baseline. 100% load data (left) 
and >100% load data (right). 
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