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1. Summary of Findings 
For the HUMS2025 Data Challenge, we developed a robust methodology for early detection and tracking of 
gearbox casing cracks using a selection of conventional and novel vibration analysis techniques. Our approach 
was two-fold, leveraging aspects of time-domain statistical analysis, and our ‘Telescopic Fault Window 
Discovery’ algorithm to identify and track crack progression. The time domain analysis uses kurtosis as the key 
indicator for detecting the anomaly, particularly focusing on impulsive shocks that signify structural defects 
within a high frequency envelope. Second, we use a machine learning based ‘Telescopic Fault Window 
Discovery’ algorithm, which identifies the critical time window where fault progression dynamics first emerge. 
This model uses Hunting-tooth Synchronous Signal Average (H-SSA) samples, feature embedding, and a deep 
neural network trained on progressively expanding fault windows to generate a monotonic condition indicator.  
We identified an early indication of defect at 125%-torque H-SSA index 136 (Day 6 1044h) in the accelerometer 
placed on the front of the gearbox, and produced a reliable monotonic condition indicator from index 183 (Day 
7 1011h). 
These findings demonstrate the effectiveness of statistical signal processing and machine learning techniques 
for predictive maintenance, significantly enhancing early fault detection and trending capabilities in helicopter 
gearbox health monitoring. 

2. Description of Analysis Methods 
Time Domain Statistical Analysis: 

By analysing the time-domain characteristics of vibration signals, early indications of defects such as cracks can 
be detected before they progress into critical failures. This approach is particularly useful for identifying 
transient events, trends, and irregularities in the vibration pattern. In the context of detecting early gearbox 
casing cracks, we use this to identifying changes in statistical features that indicate the presence of anomalies. 
The following are some of the statistical metrics used: 

1. Root Mean Square (RMS): Represents the overall energy content of the vibration signal and is used to 
quantify the intensity of vibrations. A sudden increase in RMS values may indicate the onset of 
structural damage. 

2. Kurtosis: Measures the sharpness of the vibration signal’s amplitude distribution. A high kurtosis value 
suggests the presence of impulsive shocks, which are characteristic of cracks in mechanical components. 



3. Envelope Analysis: This technique first uses a Bandpass filter with a frequency range of 2-5 kHz. This 
range was chosen because it's higher than the fundamental frequencies of normal gearbox operation 
and focuses on the region where crack-induced impacts generate resonances. This filtering removes 
low-frequency operational noise and irrelevant high-frequency content, leaving only the frequencies of 
interest. After filtering, extract the analytic part of the Hilbert Transformed signal to calculate the 
amplitude envelope. The envelope isolates the modulation of high-frequency signals caused by 
repetitive impacts or transients, which are indicative of fault progression.  

Telescopic Fault Window Discovery: 

The driving motivation for our novel algorithm ‘Telescopic Fault Window Discovery’ is to search for the critical 
time window where fault progression dynamics first emerge, and use only that window to train a ML model that 
produces a monotonic condition indicator for the entire time domain. The condition indicator (CI) is then used 
for both early fault detection (where the CI becomes statistically significantly different from zero), and fault 
trending. The process is as follows: 

1. Data Preparation 
a. Each Hunting-tooth Synchronous Signal Average (H-SSA) sample at 125%-rated torque is 

standardised to zero mean and unit variance. 
b. Use a chirp z-transformation to calculate the Hamming-window-modulated FFT of each 

standardised sample. 
2. Maximal Variance Feature Embedding: For the relevant training window, select an embedding ι:ℝ𝑛𝑛 →

ℝ𝑚𝑚 (in this case 𝑛𝑛 = 48,564, 𝑚𝑚 = 10) to maximise the variance over time of the 𝑚𝑚 selected 
components, subject to a sparsity condition on the input space. An example embedding (selected 
components in red) is depicted below. 

 
Figure 1: Example of pre-embedded (blue) and post-embedding (red) frequency features for a H-SSA sample. 

3. Model Training Procedure: 
a. Given a fault window ‘anchor’ (see item 5 for how this is chosen without reference to a priori 

knowledge), construct a telescopic series of training batch windows about the anchor, as shown 
in Figure 2 for a set of 5 windows about an anchor index of 200. 

b. Construct a response function, 

𝑟𝑟(𝑡𝑡) = 𝒩𝒩(𝜇𝜇 = 0,𝜎𝜎2)() + � 0, 𝑡𝑡 < 𝑡𝑡𝑎𝑎𝑛𝑛𝑎𝑎ℎ𝑜𝑜𝑜𝑜
𝑐𝑐 +  𝑠𝑠𝑡𝑡, 𝑡𝑡 ≥ 𝑡𝑡𝑎𝑎𝑛𝑛𝑎𝑎ℎ𝑜𝑜𝑜𝑜, 

where 𝒩𝒩(𝜇𝜇, 𝜎𝜎2)() is a gassian-distributed random number generator, and typical constants are 
𝜎𝜎 = 10, 𝑐𝑐 = 100, 𝑠𝑠 = 10. The value for s sets the scale for the derived condition indicator. An 
example response function about 𝑡𝑡𝑎𝑎𝑛𝑛𝑎𝑎ℎ𝑜𝑜𝑜𝑜 = 200 is shown in Figure 2. 

c. Use a dense, deep neural network with an input vector in the embedding output space defined 
in item 2, and a single output neuron.  

d. For each training window in increasing-size order, train the network on randomly shuffled 
batches for a number of epochs (here we used 1000).  
 



4. Model Inference: Evaluate the condition indicator (CI) through inference of the trained model on the 
embedded vectors at all predictor times. 

5. Window Search Procedure: In order to select the anchor time, sweep the time domain and select the 
anchor time that maximises a monotonicity metric (i.e. that only tends to increase over time).  

 
Figure 2: Depiction of telescopic training windows used to construct our condition indicator. The blue line is the response function 

used for regression within each training window. The centre of the training windows is found iteratively. 

3. Key Fault Characteristics for Early Detection  

Our condition indicator (CI) for the 2nd channel (where accelerometer placed at the front of the gear box) is 
depicted in Figure 3, showing a relatively clear monotonic CI becoming reliably in the fault zone by index 183 
(corresponding to Day 7 at 1011 hrs). The CIs for other channels are shown in Figure 4, showing that each of the 
other accelerometers yield a weaker, later, but consistent indication of fault. The latest of which is the 3rd 
channel, which doesn’t reliably indicate fault until index 500 (corresponding to Day 14 at 0930 hrs). 

4. Fault Progression Trending Curve 
Figure 4 depicts the condition indicator (CI) progression for all four accelerometers. Although the 2nd channel is 
the strongest fault progression indicator, all four H-SSA channels’ CIs are reliably monotonic by index 600 
(corresponding to Day 15 at 1523 hrs). 
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Figure 3: Condition indicator from H-SSA Channel 1 (2nd channel), showing the ‘earliest potential’ and ‘earliest reliable’ fault indicator, 
and the fault progression thereafter. 



Figure 5 depicts the progression of kurtosis values extracted from the envelope of filtered vibration signals for 
the 2nd channel. An increase in kurtosis towards the later samples indicates the presence of sharp, impulsive 
events in the signal, which are characteristic of structural defects such as cracks in the gearbox casing. This trend 
highlights the effectiveness of kurtosis as a diagnostic feature for fault detection.  

 

Figure 5: Envelope Kurtosis trend over time for the 2nd channel (sensor nearest to the crack location), using data from all three 
torque ratings: 100%, 125%, and 150%. 

5. Supplementary Information 
This work is supported by Priori Analytica’s commercial offerings of vibration monitoring and predictive 
maintenance products and services.  

 

Figure 4: Conditional indicators from all H-SSA Channels (labelled 0 through 4), showing Channel 1 (2nd channel) as the strongest 
fault progression indicator. 
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